Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposit...Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposite polarity. There is no systematic research on the other thin-bed types. In this article, all of the thin-beds are classified into four types: thin-beds with equal magnitude and opposite polarity, thin-beds with unequal magnitude and opposite polarity, thin-beds with equal magnitude and identical polarity, and thin-beds with unequal magnitude and identical polarity. By analytical study, an equation describing the general relationship between seismic peak frequency and thin-bed thickness was derived which shows there is a Complex implicit non-linear relationship between them and which is difficult to use in practice. In order to solve this problem, we simplify the relationship by Taylor expansion and discuss the precision of the approximation formulae with different orders for the four types of thin-beds. Compared with the traditional amplitude method for thin-bed thickness calculation, the method we present has a higher precision and isn't influenced by the absolute value of top or bottom reflection coefficient, so it is convenient for use in practice.展开更多
Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties o...Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties of ship seismic wave, the numerical calculation of synthetic seismograms on seafloor aroused by a low frequency point sound source is carried out using a wave number integration technique combined with inverse Fourier transform. According to the numerical example of hard seafloor, the time series of seismic wave on seafloor are mostly composed of interface waves and normal mode waves. Each normal mode wave has a well defined low cut-off frequency, while the interface wave doesn't have. The frequency dispersion of normal mode wave is obvious when frequency is lower than 100Hz, while the interface wave is dispersive only in the infra-sound frequency range. The time series of seismic wave is dominated by the interface wave when the source frequency is less than the minimal cut-off frequency of normal mode wave.展开更多
Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for inter- facial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG sys...Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for inter- facial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG system. In this research, a simplified function was deduced to calculate the spectral resolution of picosecond SFG system and the lineshape of SFG spectra based on the Guassian shaped functions of IR beam and visible beam. The function indicates that the lineshpe of SFG spectra from nonresonant samples can be calculated by the Guassian widths of both IR beam and visible beam. And the Voigt lineshape of SFG spectra from vibrational resonant samples can be calculated by the Homogeneous broadening (Lorentzian width) and Inhomogeneous broadening (Guassian width) of vibrational modes, as well as the Guassian widths of both IR beam and visible beam. Such functions were also applied to verify the spectral resolution of the polarization-resolved and frequency-resolved picosecond SFG-VS system which was developed by our group recently. It is shown that the linewidths of IR beams that generated from current laser system are about 1.5 cm-1. The calculated spectral resolution of current picosecond IR scanning SFG-VS system is about 4.6 cm-1, which is consist with he spctral resolution shown in the spectra of cholesterol monolayer (3.5-5 cm-1).展开更多
The objectives of this research were to understand the process of converting toluene into phenol in a one-step process directly from a water–toluene mixture using the plasma in-liquid method.Experiments were conducte...The objectives of this research were to understand the process of converting toluene into phenol in a one-step process directly from a water–toluene mixture using the plasma in-liquid method.Experiments were conducted using 27.12 MHz radio frequency(RF) in-liquid plasma to decompose a solution of 30% toluene. Based on the experimental results as evaluated using gas chromatography–mass spectrometry(GC–MS), along with additional analysis by the Gaussian calculation, density functional theory(DFT) hybrid exchange–correlational functional(B3LYP)and 6-311 G basis, the phenol generated from toluene was quantified including any by-products.In the experiment, it was found that OH radicals from water molecules produced using RF inliquid plasma play a significant role in the chemical reaction with toluene. The experimental results suggest that phenol can be directly produced from a water–toluene mixture. The maximum phenol yields were 0.0013% and 0.0038% for irradiation times of 30s and 60s,respectively, at 120 W.展开更多
Gold mineralization in the Tanghuping Prospect was the target of the geophysical exploration. The mineralization shows close relation with geological structures and is accompanied by alteration. Sulfide concentrations...Gold mineralization in the Tanghuping Prospect was the target of the geophysical exploration. The mineralization shows close relation with geological structures and is accompanied by alteration. Sulfide concentrations in the altered zones w ere used to trace the mineralization by Induced Polarization(IP) method. Through laboratory and field measurements of some selected samples of the study area,t heir geophysical properties were studied carefully. After that by numerical calc ulation,a geophysical model was built. Six lines were designed to use dual-fre quency IP sounding in the west of the surveyed area. Gradient,pole-dipole and reverse pole-dipole arrays were used to acquire the data. Interpretation of the processed data shows eight veins that demonstrate diverging and converging phen omena. Therefore east of the surveyed area is considered as most prosperous zone in the study area.展开更多
Compact supercapacitors(SCs)have attracted attention for their great potential to replace bulky aluminum electrolytic capacitors(AECs)in alternating current(AC)line filtering applications.Herein,the fabrication of a h...Compact supercapacitors(SCs)have attracted attention for their great potential to replace bulky aluminum electrolytic capacitors(AECs)in alternating current(AC)line filtering applications.Herein,the fabrication of a high-frequency SC is reported using Ketjen black(KB)nanoparticles doped with phosphorus(P)to achieve a high areal capacitance of up to 2.26 mF cm^(-2)along with a high-rate capability,with a phase angle of-80.2°at 120 Hz.The high performance of the phosphorus-doped KB(designated PKB)SC with a 6 M KOH aqueous electrolyte is associated with its increased surface wettability and additional capacitive sites provided by the P-doping.Density functional theory(DFT)calculations further indicate that the P-doping enhances the interactions between the electrolyte ions and the carbon surface,thus leading to an improved electrochemical performance.These results suggest that the P-doped carbonbased SC could be highly favored in replacing conventional AECs in various high-frequency electronic devices.展开更多
基金supported by National Key S&T Special Projects of Marine Carbonate 2008ZX05000-004CNPC Projects 2008E-0610-10
文摘Quantitative thickness estimation below tuning thickness is a great challenge in seismic exploration. Most studies focus on the thin-beds whose top and bottom reflection coefficients are of equal magnitude and opposite polarity. There is no systematic research on the other thin-bed types. In this article, all of the thin-beds are classified into four types: thin-beds with equal magnitude and opposite polarity, thin-beds with unequal magnitude and opposite polarity, thin-beds with equal magnitude and identical polarity, and thin-beds with unequal magnitude and identical polarity. By analytical study, an equation describing the general relationship between seismic peak frequency and thin-bed thickness was derived which shows there is a Complex implicit non-linear relationship between them and which is difficult to use in practice. In order to solve this problem, we simplify the relationship by Taylor expansion and discuss the precision of the approximation formulae with different orders for the four types of thin-beds. Compared with the traditional amplitude method for thin-bed thickness calculation, the method we present has a higher precision and isn't influenced by the absolute value of top or bottom reflection coefficient, so it is convenient for use in practice.
基金Sponsored by National Nature Science Foundation of China ( 51179195)National Defense Foundation of China ( 513030203-02)
文摘Elastic wave on seafloor caused by low frequency noise radiated from ship is called ship seismic wave which can be used to identify ship target. In order to analyze the wave components and the propagating properties of ship seismic wave, the numerical calculation of synthetic seismograms on seafloor aroused by a low frequency point sound source is carried out using a wave number integration technique combined with inverse Fourier transform. According to the numerical example of hard seafloor, the time series of seismic wave on seafloor are mostly composed of interface waves and normal mode waves. Each normal mode wave has a well defined low cut-off frequency, while the interface wave doesn't have. The frequency dispersion of normal mode wave is obvious when frequency is lower than 100Hz, while the interface wave is dispersive only in the infra-sound frequency range. The time series of seismic wave is dominated by the interface wave when the source frequency is less than the minimal cut-off frequency of normal mode wave.
文摘Sum frequency generation vibrational spectroscopy (SFG-VS) is a robust technique for inter- facial investigation at molecular level. The performance of SFG-VS mostly depends on the spectral resolution of the SFG system. In this research, a simplified function was deduced to calculate the spectral resolution of picosecond SFG system and the lineshape of SFG spectra based on the Guassian shaped functions of IR beam and visible beam. The function indicates that the lineshpe of SFG spectra from nonresonant samples can be calculated by the Guassian widths of both IR beam and visible beam. And the Voigt lineshape of SFG spectra from vibrational resonant samples can be calculated by the Homogeneous broadening (Lorentzian width) and Inhomogeneous broadening (Guassian width) of vibrational modes, as well as the Guassian widths of both IR beam and visible beam. Such functions were also applied to verify the spectral resolution of the polarization-resolved and frequency-resolved picosecond SFG-VS system which was developed by our group recently. It is shown that the linewidths of IR beams that generated from current laser system are about 1.5 cm-1. The calculated spectral resolution of current picosecond IR scanning SFG-VS system is about 4.6 cm-1, which is consist with he spctral resolution shown in the spectra of cholesterol monolayer (3.5-5 cm-1).
基金partially supported by JSPS KAKENHI Grant Number 15K05833
文摘The objectives of this research were to understand the process of converting toluene into phenol in a one-step process directly from a water–toluene mixture using the plasma in-liquid method.Experiments were conducted using 27.12 MHz radio frequency(RF) in-liquid plasma to decompose a solution of 30% toluene. Based on the experimental results as evaluated using gas chromatography–mass spectrometry(GC–MS), along with additional analysis by the Gaussian calculation, density functional theory(DFT) hybrid exchange–correlational functional(B3LYP)and 6-311 G basis, the phenol generated from toluene was quantified including any by-products.In the experiment, it was found that OH radicals from water molecules produced using RF inliquid plasma play a significant role in the chemical reaction with toluene. The experimental results suggest that phenol can be directly produced from a water–toluene mixture. The maximum phenol yields were 0.0013% and 0.0038% for irradiation times of 30s and 60s,respectively, at 120 W.
文摘Gold mineralization in the Tanghuping Prospect was the target of the geophysical exploration. The mineralization shows close relation with geological structures and is accompanied by alteration. Sulfide concentrations in the altered zones w ere used to trace the mineralization by Induced Polarization(IP) method. Through laboratory and field measurements of some selected samples of the study area,t heir geophysical properties were studied carefully. After that by numerical calc ulation,a geophysical model was built. Six lines were designed to use dual-fre quency IP sounding in the west of the surveyed area. Gradient,pole-dipole and reverse pole-dipole arrays were used to acquire the data. Interpretation of the processed data shows eight veins that demonstrate diverging and converging phen omena. Therefore east of the surveyed area is considered as most prosperous zone in the study area.
基金supported by grants from the National Research Foundation of Korea(NRF-2020R1A2C2008798)Korea University。
文摘Compact supercapacitors(SCs)have attracted attention for their great potential to replace bulky aluminum electrolytic capacitors(AECs)in alternating current(AC)line filtering applications.Herein,the fabrication of a high-frequency SC is reported using Ketjen black(KB)nanoparticles doped with phosphorus(P)to achieve a high areal capacitance of up to 2.26 mF cm^(-2)along with a high-rate capability,with a phase angle of-80.2°at 120 Hz.The high performance of the phosphorus-doped KB(designated PKB)SC with a 6 M KOH aqueous electrolyte is associated with its increased surface wettability and additional capacitive sites provided by the P-doping.Density functional theory(DFT)calculations further indicate that the P-doping enhances the interactions between the electrolyte ions and the carbon surface,thus leading to an improved electrochemical performance.These results suggest that the P-doped carbonbased SC could be highly favored in replacing conventional AECs in various high-frequency electronic devices.