As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crud...As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.展开更多
The Sargent dividing wall column can implement four products separation sequences in one column based on Fully Thermally Coupled Distillation Column. The initial design parameters are required for the design optimizat...The Sargent dividing wall column can implement four products separation sequences in one column based on Fully Thermally Coupled Distillation Column. The initial design parameters are required for the design optimization or dynamic control of the Sargent dividing wall column, and in order to make the rigorous simulation of the Sargent dividing wall column more conducive to convergence, a ten column model for complex Sargent column is established in this paper,and the shortcut design method of this model is proposed. The internal minimum vapor and liquid flow are obtained by the Underwood equations and the mass balance method and the V-min method. The separation for a 4-component shortcut mixture of pentane, hexane, heptane and octane was considered, while the initial values of design parameters and the ratio of vapor-liquid distribution of each column were calculated by using the shortcut design method of a ten column model. And by comparing the shortcut calculations with rigorous simulation results, the practicality and reliability of shortcut calculations were verified. The reason for energy saving was analyzed based on back-mixing. A virtual heat exchanger is proposed to make the Sargent dividing wall column more energy efficient.展开更多
Octane and p-xylene are common components in crude gasoline,so their separation process is very important in petroleum industry.The azeotrope and near azeotrope are often separated by extractive distillation in indust...Octane and p-xylene are common components in crude gasoline,so their separation process is very important in petroleum industry.The azeotrope and near azeotrope are often separated by extractive distillation in industry,which can realize the recovery and utilization of resources.In this work,the vapor–liquid equilibrium experiment was used to obtain the vapor–liquid equilibrium properties of the difficult separation system,and on this basis,the solvent extraction mechanism was studied.The mechanism of solvent separation plays a guiding role in selecting suitable solvents for industrial separation.The interaction energy,bond length and charge density distribution of p-xylene with solvent are calculated by quantum chemistry method.The quantum chemistry calculation results and experiment results showed that N-formylmorpholine is the best solvent among the alternative solvents in the work.This work provides an effective and complete solvent screening process from phase equilibrium experiments to quantum chemical calculation.An extractive distillation simulation process with N-formylmorpholine as solvent is designed to separate octane and p-xylene.In addition,the feasibility and effectiveness of the intensified vapor recompression assisted extraction distillation are also discussed.In the extractive distillation process,the vapor recompression-assisted extraction distillation process is globally optimal.Compared with basic process,the total annual cost can be reduced by 43.2%.This study provides theoretical guidance for extractive distillation separation technology and solvent selection.展开更多
An energy consumption analysis based on the heating characteristic of a building with central heat exchanger in a university of Tianjin was done,and the feasibility of intermittent heating with variable speed pumps wa...An energy consumption analysis based on the heating characteristic of a building with central heat exchanger in a university of Tianjin was done,and the feasibility of intermittent heating with variable speed pumps was discussed. By comparing various methods of energy consumption analysis,a modified Bin method based on the weather data in Tianjin was adopted. The heat consumption of the buildings under intermittent heating mode was calculated and compared with continuous heating mode,the result shows that intermittent heating can reduce energy consumption for 1 941 759 kW·h,save standard coal for 341 t,and reduce pump power consumption for 72 679 kW·h annually. Intermittent operation by means of varying the pump frequency not only leads to savings in fuel consumption and reduction in pollutant emissions,but also reduces operating costs significantly and it is an ideal energy-saving method. By analyzing the results,the recommendations of heating operation regulation and the transformation of pipe network were proposed separately to different kinds of buildings in colleges,such as laboratory building,teaching building.展开更多
Over all fuel condition and the money we spend on the said fuel leads us to think about savings. What can we do? As individuals, we can educate our students and their family members. The easiest way to do that is to ...Over all fuel condition and the money we spend on the said fuel leads us to think about savings. What can we do? As individuals, we can educate our students and their family members. The easiest way to do that is to monitor their weekly spending for them. Together with their family members, the students have to monitor the consumption of electrical energy through three weeks. In the first week, they should spend electricity as they do everyday. During the second week they have the increase of spending of electrical energy. The third week is the saving energy week. They have to make a plan with their family members on how to save energy, for example, turning offthe lights in the empty rooms, turning offthe TV when there is no one watching it, etc.. Every week they have to note the data in kilowatts. When they acquire all the information and transform it into money they can see if it's worth saving electrical energy or not. They will see they don't have to give up the comforts of the modern life. The value of the project is in the fact that many households continue with the electrical energy saving. In fact, the number of the households is increasing.展开更多
With the rapid development of the social economy,people are paying more and more attention to environmental issues.If society wants sustainable development,it must put energy conservation and emission reduction on the...With the rapid development of the social economy,people are paying more and more attention to environmental issues.If society wants sustainable development,it must put energy conservation and emission reduction on the agenda.At this stage,China has vigorously promoted energy conservation and emission reduction,and all walks of life have gradually embarked on the green road of energy conservation.In recent years,energy saving measures has been widely used in China's oilfield electrical engineering.The author explores and analyzes the basic principles of energy saving measures applied in oilfield electrical engineering,and proposes an effective way to apply energy saving measures in oilfield electrical engineering,hoping to contribute to the energy saving effect of oilfield electrical engineering.展开更多
In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of r...In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of residential buildings and Model B of schools and hospitals were used to estimate the daily cooling load profile in Makkah, Saudi Arabia at latitude of 21.42°N and longitude of 39.83°E. Model A was constructed from common materials, but Model B as Model A with 5 - 8 cm thermal insulation and double layers glass windows. The average data of Makkah weather through 2010, 2011 and 2012 were used to calculate the cooling load profile and performance of air conditioning systems. The maximum cooling load was calculated at 15:00 o’clock for a main floor building to a 40-floor of residential building and to 5 floors of schools. A district cooling plant of 180,000 Refrigeration Ton was suggested to serve the Gabal Al Sharashf area in the central zone of Makkah. A thermal storage system to store the excess cooling capacity was used. Air cooled condensers were used in the analysis of chiller refrigeration cycle. The operating cost was mainly a function of electrical energy consumption. Fixed electricity tariff was 0.04 $/kWh for electromechanical counter, and 0.027, 0.04, 0.069 $/kWh for shifting loads peak for the smart digital counter. The results showed that the daily savings in consumed power are 8.27% in spring, 6.86% in summer, 8.81% in autumn, and 14.55% in winter. Also, the daily savings in electricity bills are 12.26% in spring, 16.66% in summer, 12.84% in autumn, and 14.55% in winter. The obtained maximum saving in consumed power is 14.5% and the daily saving in electricity bills is 43% in summer when the loads peak is completely shifted to off-peak period.展开更多
Information collection from remote location is very important for several tasks such as temperate monitoring, air quality investigation, and wartime surveillance. Wireless sensor network is the first choice to complet...Information collection from remote location is very important for several tasks such as temperate monitoring, air quality investigation, and wartime surveillance. Wireless sensor network is the first choice to complete these types of tasks. Basically, information prediction scheme is an important feature in any sensor nodes. The efficiency of the sensor network can be improved to large extent with a suitable information prediction scheme. Previously, there were several efforts to resolve this problem, but their accuracy is decreased as the prediction threshold reduces to a small value. Our proposed Adams-Bashforth-Moulton algorithm to overcome this drawback was compared with the Milne Simpson scheme. The proposed algorithm is simulated on distributed sensor nodes where information is gathered from the Intel Berkeley Research Laboratory. To maximize the power saving in wireless sensor network, our adopted method achieves the accuracy of 60.28 and 59.2238 for prediction threshold of 0.01 for Milne Simpson and Adams-Bashforth-Moulton algorithms, respectively.展开更多
Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretic...Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretical analysis and a case study. It concludes that on-grid electricity price on the high side, compared to heat price, will lead power plants to produce more electricity but less heat, thus causing decrease of the plants' thermal eff iciency and harm to energy saving of the whole society.展开更多
The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need...The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).展开更多
基金This work was financially supported by the National Natural Science Foundation of China(52074089 and 52104064)Natural Science Foundation of Heilongjiang Province of China(LH2019E019).
文摘As the main link of ground engineering,crude oil gathering and transportation systems require huge energy consumption and complex structures.It is necessary to establish an energy efficiency evaluation system for crude oil gathering and transportation systems and identify the energy efficiency gaps.In this paper,the energy efficiency evaluation system of the crude oil gathering and transportation system in an oilfield in western China is established.Combined with the big data analysis method,the GA-BP neural network is used to establish the energy efficiency index prediction model for crude oil gathering and transportation systems.The comprehensive energy consumption,gas consumption,power consumption,energy utilization rate,heat utilization rate,and power utilization rate of crude oil gathering and transportation systems are predicted.Considering the efficiency and unit consumption index of the crude oil gathering and transportation system,the energy efficiency evaluation system of the crude oil gathering and transportation system is established based on a game theory combined weighting method and TOPSIS evaluation method,and the subjective weight is determined by the triangular fuzzy analytic hierarchy process.The entropy weight method determines the objective weight,and the combined weight of game theory combines subjectivity with objectivity to comprehensively evaluate the comprehensive energy efficiency of crude oil gathering and transportation systems and their subsystems.Finally,the weak links in energy utilization are identified,and energy conservation and consumption reduction are improved.The above research provides technical support for the green,efficient and intelligent development of crude oil gathering and transportation systems.
基金supported by the High-level Talents Program of Hebei Province (A 2017002032)
文摘The Sargent dividing wall column can implement four products separation sequences in one column based on Fully Thermally Coupled Distillation Column. The initial design parameters are required for the design optimization or dynamic control of the Sargent dividing wall column, and in order to make the rigorous simulation of the Sargent dividing wall column more conducive to convergence, a ten column model for complex Sargent column is established in this paper,and the shortcut design method of this model is proposed. The internal minimum vapor and liquid flow are obtained by the Underwood equations and the mass balance method and the V-min method. The separation for a 4-component shortcut mixture of pentane, hexane, heptane and octane was considered, while the initial values of design parameters and the ratio of vapor-liquid distribution of each column were calculated by using the shortcut design method of a ten column model. And by comparing the shortcut calculations with rigorous simulation results, the practicality and reliability of shortcut calculations were verified. The reason for energy saving was analyzed based on back-mixing. A virtual heat exchanger is proposed to make the Sargent dividing wall column more energy efficient.
基金This work is supported by the National Natural Science Foundation of China(No.21776145)National Natural Science Foundation of China(No.21676152).
文摘Octane and p-xylene are common components in crude gasoline,so their separation process is very important in petroleum industry.The azeotrope and near azeotrope are often separated by extractive distillation in industry,which can realize the recovery and utilization of resources.In this work,the vapor–liquid equilibrium experiment was used to obtain the vapor–liquid equilibrium properties of the difficult separation system,and on this basis,the solvent extraction mechanism was studied.The mechanism of solvent separation plays a guiding role in selecting suitable solvents for industrial separation.The interaction energy,bond length and charge density distribution of p-xylene with solvent are calculated by quantum chemistry method.The quantum chemistry calculation results and experiment results showed that N-formylmorpholine is the best solvent among the alternative solvents in the work.This work provides an effective and complete solvent screening process from phase equilibrium experiments to quantum chemical calculation.An extractive distillation simulation process with N-formylmorpholine as solvent is designed to separate octane and p-xylene.In addition,the feasibility and effectiveness of the intensified vapor recompression assisted extraction distillation are also discussed.In the extractive distillation process,the vapor recompression-assisted extraction distillation process is globally optimal.Compared with basic process,the total annual cost can be reduced by 43.2%.This study provides theoretical guidance for extractive distillation separation technology and solvent selection.
文摘An energy consumption analysis based on the heating characteristic of a building with central heat exchanger in a university of Tianjin was done,and the feasibility of intermittent heating with variable speed pumps was discussed. By comparing various methods of energy consumption analysis,a modified Bin method based on the weather data in Tianjin was adopted. The heat consumption of the buildings under intermittent heating mode was calculated and compared with continuous heating mode,the result shows that intermittent heating can reduce energy consumption for 1 941 759 kW·h,save standard coal for 341 t,and reduce pump power consumption for 72 679 kW·h annually. Intermittent operation by means of varying the pump frequency not only leads to savings in fuel consumption and reduction in pollutant emissions,but also reduces operating costs significantly and it is an ideal energy-saving method. By analyzing the results,the recommendations of heating operation regulation and the transformation of pipe network were proposed separately to different kinds of buildings in colleges,such as laboratory building,teaching building.
文摘Over all fuel condition and the money we spend on the said fuel leads us to think about savings. What can we do? As individuals, we can educate our students and their family members. The easiest way to do that is to monitor their weekly spending for them. Together with their family members, the students have to monitor the consumption of electrical energy through three weeks. In the first week, they should spend electricity as they do everyday. During the second week they have the increase of spending of electrical energy. The third week is the saving energy week. They have to make a plan with their family members on how to save energy, for example, turning offthe lights in the empty rooms, turning offthe TV when there is no one watching it, etc.. Every week they have to note the data in kilowatts. When they acquire all the information and transform it into money they can see if it's worth saving electrical energy or not. They will see they don't have to give up the comforts of the modern life. The value of the project is in the fact that many households continue with the electrical energy saving. In fact, the number of the households is increasing.
文摘With the rapid development of the social economy,people are paying more and more attention to environmental issues.If society wants sustainable development,it must put energy conservation and emission reduction on the agenda.At this stage,China has vigorously promoted energy conservation and emission reduction,and all walks of life have gradually embarked on the green road of energy conservation.In recent years,energy saving measures has been widely used in China's oilfield electrical engineering.The author explores and analyzes the basic principles of energy saving measures applied in oilfield electrical engineering,and proposes an effective way to apply energy saving measures in oilfield electrical engineering,hoping to contribute to the energy saving effect of oilfield electrical engineering.
文摘In hot arid countries with severe weather, the summer air conditioning systems consume much electrical power at peak period. Shifting the loads peak to off-peak period with thermal storage is recommended. Model A of residential buildings and Model B of schools and hospitals were used to estimate the daily cooling load profile in Makkah, Saudi Arabia at latitude of 21.42°N and longitude of 39.83°E. Model A was constructed from common materials, but Model B as Model A with 5 - 8 cm thermal insulation and double layers glass windows. The average data of Makkah weather through 2010, 2011 and 2012 were used to calculate the cooling load profile and performance of air conditioning systems. The maximum cooling load was calculated at 15:00 o’clock for a main floor building to a 40-floor of residential building and to 5 floors of schools. A district cooling plant of 180,000 Refrigeration Ton was suggested to serve the Gabal Al Sharashf area in the central zone of Makkah. A thermal storage system to store the excess cooling capacity was used. Air cooled condensers were used in the analysis of chiller refrigeration cycle. The operating cost was mainly a function of electrical energy consumption. Fixed electricity tariff was 0.04 $/kWh for electromechanical counter, and 0.027, 0.04, 0.069 $/kWh for shifting loads peak for the smart digital counter. The results showed that the daily savings in consumed power are 8.27% in spring, 6.86% in summer, 8.81% in autumn, and 14.55% in winter. Also, the daily savings in electricity bills are 12.26% in spring, 16.66% in summer, 12.84% in autumn, and 14.55% in winter. The obtained maximum saving in consumed power is 14.5% and the daily saving in electricity bills is 43% in summer when the loads peak is completely shifted to off-peak period.
文摘Information collection from remote location is very important for several tasks such as temperate monitoring, air quality investigation, and wartime surveillance. Wireless sensor network is the first choice to complete these types of tasks. Basically, information prediction scheme is an important feature in any sensor nodes. The efficiency of the sensor network can be improved to large extent with a suitable information prediction scheme. Previously, there were several efforts to resolve this problem, but their accuracy is decreased as the prediction threshold reduces to a small value. Our proposed Adams-Bashforth-Moulton algorithm to overcome this drawback was compared with the Milne Simpson scheme. The proposed algorithm is simulated on distributed sensor nodes where information is gathered from the Intel Berkeley Research Laboratory. To maximize the power saving in wireless sensor network, our adopted method achieves the accuracy of 60.28 and 59.2238 for prediction threshold of 0.01 for Milne Simpson and Adams-Bashforth-Moulton algorithms, respectively.
文摘Regarding the state's policy that gives a higher on-grid electricity price to natural gas CHP (combined heat and power) projects, this paper studies the effect of it on the operation of those projects by theoretical analysis and a case study. It concludes that on-grid electricity price on the high side, compared to heat price, will lead power plants to produce more electricity but less heat, thus causing decrease of the plants' thermal eff iciency and harm to energy saving of the whole society.
基金This work was supported by Natural Science Basic Research Program of Shaanxi(2021JQ-689).
文摘The so-called indirect evaporative cooling technology is widely used in air conditioning applications.The thermal characterization of tube-type indirect evaporative coolers,however,still presents challenges which need to be addressed to make this technology more reliable and easy to implement.This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter.In particular,the required tests were carried out considering a range of dry-bulb temperatures between 16℃ and 18℃ and a temperature difference between the wet-bulb and dry-bulb temperature of 2℃∼4℃.The integrated convective heat transfer coefficient inside the tube in the drenching condition has been found to lie in the range between 36.10 and 437.4(W/(m^(2)⋅K)).