The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper,...The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.展开更多
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al wit...Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the parameters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 ms throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 ms higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.展开更多
In the paper, we aim to show N-(2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine (HM-I) as explosive material that satisfies requirements of sensitivity and hydrolytically stability. The influence of nitro group substit...In the paper, we aim to show N-(2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine (HM-I) as explosive material that satisfies requirements of sensitivity and hydrolytically stability. The influence of nitro group substitutions on the thermal and chemical stability as well as the explosive performance of HM-I is also investigated. We found that nitro group substitution to the triazole ring of HM-I can significantly improve the properties of this new material. Only -NH2 substitution position (but not their number) in the core molecule is appropriate to increase the stability and improve explosive performances of HM-I.展开更多
基金Sponsored by the National Natural Science Foundation of China (10672080)
文摘The method of two-dimensional viscous space-time conservation element and solution element (CE/SE) can be used to calculate the gas-liquid two-phase interior flow field in pulse detonation engine (PDE). In this paper, the evolution of the detonation wave and the distribution of its physical parameters were analyzed. The numerical results show that the change of axial velocity of gas is the same as that of detonation pressure. The larger the liquid droplet radius is, the longer the time to get stable detonation wave is. The calculated results coincide with the experimented results better.
基金The authors would like to acknowledge National Natural Science Foundation of China(Grant No.11832006)Open Project of State Key Laboratory of Explosion Science and Technology in Beijing Institute of Technology(Grant No.KFJJ20-04 M)to provide fund for conducting experiments.
文摘Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the parameters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 ms throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 ms higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.
基金the LMA scientific project“A theoretical and experimental investigations of new potentially explosive materials using quantum mechanical methods(NSPROG-I4)”.
文摘In the paper, we aim to show N-(2,4,6-trinitrophenyl)-1H-1,2,4-triazol-3-amine (HM-I) as explosive material that satisfies requirements of sensitivity and hydrolytically stability. The influence of nitro group substitutions on the thermal and chemical stability as well as the explosive performance of HM-I is also investigated. We found that nitro group substitution to the triazole ring of HM-I can significantly improve the properties of this new material. Only -NH2 substitution position (but not their number) in the core molecule is appropriate to increase the stability and improve explosive performances of HM-I.