The absorption, fluorescence and Raman spectra of Ce(NO3)(3)(phen)(2) complex were assigned and the crystal structure of the complex was studied. Meanwhile the interactions between Cc (NO3)(3) (phen)(2) and DNA were s...The absorption, fluorescence and Raman spectra of Ce(NO3)(3)(phen)(2) complex were assigned and the crystal structure of the complex was studied. Meanwhile the interactions between Cc (NO3)(3) (phen)(2) and DNA were studied by spectrum methods. As DNA was added, it is found that both the UV absorption bands of Ce(NO3)(3)(phen)(2) and the SERS bands of Ce(NO3)(3)(phen)(2) weaken evidently, while the fluorescence intensity of Ce(NO3)(3)(phen)(2) enhance dramatically. The complex compete against EB on the reaction with DNA. It is indicated by this spectrum methods that there are strong interactions between Ce(NO3)(3)(phen)(2) and DNA, and the bond mode is intercalation. The bond constant of the complex with DNA is determined to be 1.7 x 10(5).展开更多
文摘The absorption, fluorescence and Raman spectra of Ce(NO3)(3)(phen)(2) complex were assigned and the crystal structure of the complex was studied. Meanwhile the interactions between Cc (NO3)(3) (phen)(2) and DNA were studied by spectrum methods. As DNA was added, it is found that both the UV absorption bands of Ce(NO3)(3)(phen)(2) and the SERS bands of Ce(NO3)(3)(phen)(2) weaken evidently, while the fluorescence intensity of Ce(NO3)(3)(phen)(2) enhance dramatically. The complex compete against EB on the reaction with DNA. It is indicated by this spectrum methods that there are strong interactions between Ce(NO3)(3)(phen)(2) and DNA, and the bond mode is intercalation. The bond constant of the complex with DNA is determined to be 1.7 x 10(5).