This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana...This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms. Within the framework of the AMMA campaign, measurements of an X-band radar (Xport), a vertical pointing Micro Rain Radar (MRR) to investigate microphysical processes and a dense network of rain </span><span style="font-family:Verdana;">gauges deployed in Northern Benin (West Africa) in 2006 and 2007 were</span><span style="font-family:Verdana;"> used as support to establish such estimators and evaluate their performance compared to other estimators in the literature. By carefully considering and correcting MRR attenuation and calibration issues, the </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> estimator developed </span><span style="font-family:Verdana;">with the contribution of microphysical processes and non-linear least</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">squares adjustment proves to be more efficient for quantitative rainfall estimation and produces the best statistic scores than other optimal </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms in the literature. We also find that it gives results comparable to some polarimetric algorithms including microphysical information through DSD integrated parameter retrievals.展开更多
In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the r...In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the rainfall estimation model of radar combined with rain gauge which calibrated by common Kalman filter.After data preprocessing,the radar data should be classified according to the precipitation intensity.And then,they are respectively substituted into the improved filter for calibration.The state noise variance Q(k)and the measurement noise variance R(k)can be adaptively calculated and updated according to the input observation data during this process.Then the optimal parameter value of each type of precipitation intensity can be obtained.The state noise variance Q(k)and the measurement noise variance R(k)could be assigned optimal values when filtering the remaining data.This rainfall estimation based on semiadaptive Kalman filter calibration not only improves the accuracy of rainfall estimation,but also greatly reduces the amount of calculation.It avoids errors caused by repeated calculations,and improves the efficiency of the rainfall estimation at the same time.展开更多
选取2009年3月28日广东省广州市大暴雨过程,考察了变分校准前后Z-I关系估算雷达降水率的区别。变分校准后的降水率资料具有较高的单点精度与合理的梯度分布。降水率资料能够反映大气动力特征和水汽分布等重要信息,是模拟中小尺度系统的...选取2009年3月28日广东省广州市大暴雨过程,考察了变分校准前后Z-I关系估算雷达降水率的区别。变分校准后的降水率资料具有较高的单点精度与合理的梯度分布。降水率资料能够反映大气动力特征和水汽分布等重要信息,是模拟中小尺度系统的关键因子。基于GRAPES(Global/Regional Analysis and Prediction System)区域三维变分系统,将FSU(Florida State University)对流参数化方案作为观测算子的同化试验指出,同化降水率资料后同时增强了低层大气的辐合和高层大气的辐散,从而使整层气柱的不稳定能量增加。沙氏指数和K指数诊断分析也表明,同化降水率资料后有利于触发强对流天气。此外,低空辐合有利于水汽垂直输送,维持对流发展,改进降水模拟。逐小时数值模拟结果表明:同化校准后的雷达估算降水率不仅可以改进降水分布,而且使中尺度对流系统的发展和消亡清晰地表现出来。展开更多
文摘This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms. Within the framework of the AMMA campaign, measurements of an X-band radar (Xport), a vertical pointing Micro Rain Radar (MRR) to investigate microphysical processes and a dense network of rain </span><span style="font-family:Verdana;">gauges deployed in Northern Benin (West Africa) in 2006 and 2007 were</span><span style="font-family:Verdana;"> used as support to establish such estimators and evaluate their performance compared to other estimators in the literature. By carefully considering and correcting MRR attenuation and calibration issues, the </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> estimator developed </span><span style="font-family:Verdana;">with the contribution of microphysical processes and non-linear least</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">squares adjustment proves to be more efficient for quantitative rainfall estimation and produces the best statistic scores than other optimal </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms in the literature. We also find that it gives results comparable to some polarimetric algorithms including microphysical information through DSD integrated parameter retrievals.
基金This work was supported by the National Natural Science Foundation of China(Grant No.42075007)the Open Grants of the State Key Laboratory of Severe Weather(No.2021LASW-B19).
文摘In order to solve the rainfall estimation error caused by various noise factors such as clutter,super refraction,and raindrops during the detection process of Doppler weather radar.This paper proposes to improve the rainfall estimation model of radar combined with rain gauge which calibrated by common Kalman filter.After data preprocessing,the radar data should be classified according to the precipitation intensity.And then,they are respectively substituted into the improved filter for calibration.The state noise variance Q(k)and the measurement noise variance R(k)can be adaptively calculated and updated according to the input observation data during this process.Then the optimal parameter value of each type of precipitation intensity can be obtained.The state noise variance Q(k)and the measurement noise variance R(k)could be assigned optimal values when filtering the remaining data.This rainfall estimation based on semiadaptive Kalman filter calibration not only improves the accuracy of rainfall estimation,but also greatly reduces the amount of calculation.It avoids errors caused by repeated calculations,and improves the efficiency of the rainfall estimation at the same time.
文摘选取2009年3月28日广东省广州市大暴雨过程,考察了变分校准前后Z-I关系估算雷达降水率的区别。变分校准后的降水率资料具有较高的单点精度与合理的梯度分布。降水率资料能够反映大气动力特征和水汽分布等重要信息,是模拟中小尺度系统的关键因子。基于GRAPES(Global/Regional Analysis and Prediction System)区域三维变分系统,将FSU(Florida State University)对流参数化方案作为观测算子的同化试验指出,同化降水率资料后同时增强了低层大气的辐合和高层大气的辐散,从而使整层气柱的不稳定能量增加。沙氏指数和K指数诊断分析也表明,同化降水率资料后有利于触发强对流天气。此外,低空辐合有利于水汽垂直输送,维持对流发展,改进降水模拟。逐小时数值模拟结果表明:同化校准后的雷达估算降水率不仅可以改进降水分布,而且使中尺度对流系统的发展和消亡清晰地表现出来。