For calibrating the laser plane to implement 3D shape measurement, an algorithm for extracting the laser stripe with sub-pixel accuracy is proposed. The proposed algorithm mainly consists of two stages: two-side edge...For calibrating the laser plane to implement 3D shape measurement, an algorithm for extracting the laser stripe with sub-pixel accuracy is proposed. The proposed algorithm mainly consists of two stages: two-side edge detection and center line extraction. First, the two-side edge of laser stripe is detected using the principal component angle-based progressive probabilistic Hough transform and its width is calculated through the distance between these two edges. Secondly, the center line of laser strip is extracted with 2D Taylor expansion at a sub-pixel level and the laser plane is calibrated with the 3D reconstructed coordinates from the extracted 2D sub-pixel ones. Experimental results demonstrate that the proposed method can not only extract the laser stripe at a high speed, nearly average 78 ms/frame, but also calibrate the coplanar laser stripes at a low error, limited to 0.3 mm. The proposed algorithm can satisfy the system requirement of two-side edge detection and center line extraction, and rapid speed, high precision, as well as strong anti-jamming.展开更多
For the rapid calibration of multi-line structured light system,a method based on Plücker line was proposed.Most of the conventional line-structured light calibration methods extract the feature points and transf...For the rapid calibration of multi-line structured light system,a method based on Plücker line was proposed.Most of the conventional line-structured light calibration methods extract the feature points and transform the coordinates of points to obtain the plane equation.However,a large number of points lead to complicated operation which is not suitable for the application scenarios of multi-line structured light.To solve this issue,a new calibration method was proposed that applied the form of Plücker matrix throughout the whole calibration process,instead of using the point characteristics directly.The advantage of this method is that the light plane equation can be obtained quickly and accurately in the camera coordinate frame.Correspondingly a planar target particularly for calibrating multi-line structured light was also designed.The regular lines were transformed into Plücker lines by extending the two-dimensional image plane and defining a new image space.To transform the coordinate frame of Plücker lines,the perspective projection mathematical model was re-expressed based on the Plücker matrix.According to the properties of the line and plane in the Plücker space,a linear matrix equation was efficiently constructed by combining the Plücker matrices of several coplanar lines so that the line-structured light plane equation could be furtherly solved.The experiments performed validate the proposed method and demonstrate the significant improvement in the calibration accuracy,when the test distance is 1.8 m,the root mean square(RMS)error of the three-dimensional point is within 0.08 mm.展开更多
Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrate...Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrated by using of the camera’s projective center and the light’s information in the camera’s image surface. Without striction to the movement of the coplanar reference target and assistant adjustment equipment, this calibration method can be implemented. This method has been used and decreased the cost of calibration equipment, simplified the calibration procedure, improved calibration efficiency. Using experiment, the sensor can attain relative accuracy about 0.5%, which indicates the rationality and effectivity of this method.展开更多
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Research and Innovation Project for College Graduates of Jiangsu Province(No.CXZZ13_0086)Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1401)
文摘For calibrating the laser plane to implement 3D shape measurement, an algorithm for extracting the laser stripe with sub-pixel accuracy is proposed. The proposed algorithm mainly consists of two stages: two-side edge detection and center line extraction. First, the two-side edge of laser stripe is detected using the principal component angle-based progressive probabilistic Hough transform and its width is calculated through the distance between these two edges. Secondly, the center line of laser strip is extracted with 2D Taylor expansion at a sub-pixel level and the laser plane is calibrated with the 3D reconstructed coordinates from the extracted 2D sub-pixel ones. Experimental results demonstrate that the proposed method can not only extract the laser stripe at a high speed, nearly average 78 ms/frame, but also calibrate the coplanar laser stripes at a low error, limited to 0.3 mm. The proposed algorithm can satisfy the system requirement of two-side edge detection and center line extraction, and rapid speed, high precision, as well as strong anti-jamming.
基金National Natural Science Foundation of China(No.51575388)。
文摘For the rapid calibration of multi-line structured light system,a method based on Plücker line was proposed.Most of the conventional line-structured light calibration methods extract the feature points and transform the coordinates of points to obtain the plane equation.However,a large number of points lead to complicated operation which is not suitable for the application scenarios of multi-line structured light.To solve this issue,a new calibration method was proposed that applied the form of Plücker matrix throughout the whole calibration process,instead of using the point characteristics directly.The advantage of this method is that the light plane equation can be obtained quickly and accurately in the camera coordinate frame.Correspondingly a planar target particularly for calibrating multi-line structured light was also designed.The regular lines were transformed into Plücker lines by extending the two-dimensional image plane and defining a new image space.To transform the coordinate frame of Plücker lines,the perspective projection mathematical model was re-expressed based on the Plücker matrix.According to the properties of the line and plane in the Plücker space,a linear matrix equation was efficiently constructed by combining the Plücker matrices of several coplanar lines so that the line-structured light plane equation could be furtherly solved.The experiments performed validate the proposed method and demonstrate the significant improvement in the calibration accuracy,when the test distance is 1.8 m,the root mean square(RMS)error of the three-dimensional point is within 0.08 mm.
文摘Based on the characteristics of line structured light sensor, a speedy method for the calibration was established. With the coplanar reference target, the spacial pose between camera and optical plane can be calibrated by using of the camera’s projective center and the light’s information in the camera’s image surface. Without striction to the movement of the coplanar reference target and assistant adjustment equipment, this calibration method can be implemented. This method has been used and decreased the cost of calibration equipment, simplified the calibration procedure, improved calibration efficiency. Using experiment, the sensor can attain relative accuracy about 0.5%, which indicates the rationality and effectivity of this method.