Callose contributes to many biological processes of higher plants including pollen development,cell plate and vascular tissue formation,as well as regulating the transport function of plasmodesmata.The functions of ca...Callose contributes to many biological processes of higher plants including pollen development,cell plate and vascular tissue formation,as well as regulating the transport function of plasmodesmata.The functions of callose synthase genes in maize have been little studied.We describe a maize male-sterile mutant 39(ms39)characterized by reduced plant height.In this study,we confirmed using CRISPR/Cas9 technology that a mutation in Zm00001d043909(ZmCals12),encoding a callose synthase,is responsible for the male sterility of the ms39 mutant.Compared with male-fertile plants,callose deposition around the dyads and tetrads in ms39 anthers was significantly reduced.Increased cell autophagy observed in ms39 anthers may have been due to the premature programmed cell death of tapetal cells,leading to collapse of the anther wall structure.Disordered glucose metabolism in ms39 may have intensified autophagy in anthers.Evaluation of the ms39 gene on maize heterosis by paired-crossed experiment with 11 maize inbred lines indicated that ms39 can be used for maize hybrid seed production.展开更多
In previous study we reported that pretreatment with plasmolysis enhanced somatic embryo formation in hypocotyls of Eleutherococcus senticosus.In the present study,the expression level of callose synthase gene in embr...In previous study we reported that pretreatment with plasmolysis enhanced somatic embryo formation in hypocotyls of Eleutherococcus senticosus.In the present study,the expression level of callose synthase gene in embryos of E.senticosus in response to 2,4-D,sucrose and mannitol treatments was analyzed by RT-PCR.The results show that plasmolysis pretreatment using sucrose and mannitol significantly promoted the expression of callose synthase gene.Also,the thicker cell walls of explant plasmolyzed compared with controls were observed during the somatic embryogenesis.We suggest that the callose may make the cells in epidermis separate from neighboring cells and then develop into embryogenic potential cells.展开更多
Chemical genetics as a part of chemical genomics is a powerful and fast developing approach to dissect biological processes that may be difficult to characterize using conventional genetics because of gene redundancy ...Chemical genetics as a part of chemical genomics is a powerful and fast developing approach to dissect biological processes that may be difficult to characterize using conventional genetics because of gene redundancy or lethality and, in the case of polysaccharide biosynthesis, plant flexibility. Polysaccharide synthetic enzymes are located in two main compartments--the Golgi apparatus and plasma membrane-and can be studied in vitro using membrane fractions. Here, we first developed a high-throughput assay that allowed the screening of a library of chemicals with a potential effect on glycosyltransferase activities. Out of the 4800 chemicals screened for their effect on Golgi glucosyltransferases, 66 compounds from the primary screen had an effect on carbohydrate biosynthesis. Ten of these compounds were confirmed to inhibit glucose incorporation after a second screen. One compound exhibiting a strong inhibition effect (ID 6240780 named chemical A) was selected and further studied. It reversibly inhibits the transfer of glucose from UDP-glucose by Golgi membranes, but activates the plasma membrane-bound callose synthase. The inhibition effect is dependent on the chemical structure of the compound, which does not affect endomembrane morphology of the plant cells, but causes changes in cell wall composition. Chemical A represents a novel drug with a great potential for the study of the mechanisms of Golgi and plasma membrane-bound glucosyltransferases.展开更多
基金supported by the National Natural Science Foundation of China(31771876)the Sichuan Province Science and Technology Program(2021YFYZ0011,2021YFYZ0017).
文摘Callose contributes to many biological processes of higher plants including pollen development,cell plate and vascular tissue formation,as well as regulating the transport function of plasmodesmata.The functions of callose synthase genes in maize have been little studied.We describe a maize male-sterile mutant 39(ms39)characterized by reduced plant height.In this study,we confirmed using CRISPR/Cas9 technology that a mutation in Zm00001d043909(ZmCals12),encoding a callose synthase,is responsible for the male sterility of the ms39 mutant.Compared with male-fertile plants,callose deposition around the dyads and tetrads in ms39 anthers was significantly reduced.Increased cell autophagy observed in ms39 anthers may have been due to the premature programmed cell death of tapetal cells,leading to collapse of the anther wall structure.Disordered glucose metabolism in ms39 may have intensified autophagy in anthers.Evaluation of the ms39 gene on maize heterosis by paired-crossed experiment with 11 maize inbred lines indicated that ms39 can be used for maize hybrid seed production.
基金supported by the 948 Program of State Forestry Administration (No2009-4-26)co-sponsored by SRF for ROCS and the National Natural Science Foundation (No 30972390) of China
文摘In previous study we reported that pretreatment with plasmolysis enhanced somatic embryo formation in hypocotyls of Eleutherococcus senticosus.In the present study,the expression level of callose synthase gene in embryos of E.senticosus in response to 2,4-D,sucrose and mannitol treatments was analyzed by RT-PCR.The results show that plasmolysis pretreatment using sucrose and mannitol significantly promoted the expression of callose synthase gene.Also,the thicker cell walls of explant plasmolyzed compared with controls were observed during the somatic embryogenesis.We suggest that the callose may make the cells in epidermis separate from neighboring cells and then develop into embryogenic potential cells.
基金This work supported by grants DBI-0211797 (to N.V.R.) and MCB- 0515963 (to N.V.R.)from the National Science Foundation Plant Genome Research Program.We thank Dr Somerville (Carnegie Institution, Stanford, CA) and Dr Dupree (University of Cambridge, UK) for the seeds of transgenic plants. No conflict of interest declared.
文摘Chemical genetics as a part of chemical genomics is a powerful and fast developing approach to dissect biological processes that may be difficult to characterize using conventional genetics because of gene redundancy or lethality and, in the case of polysaccharide biosynthesis, plant flexibility. Polysaccharide synthetic enzymes are located in two main compartments--the Golgi apparatus and plasma membrane-and can be studied in vitro using membrane fractions. Here, we first developed a high-throughput assay that allowed the screening of a library of chemicals with a potential effect on glycosyltransferase activities. Out of the 4800 chemicals screened for their effect on Golgi glucosyltransferases, 66 compounds from the primary screen had an effect on carbohydrate biosynthesis. Ten of these compounds were confirmed to inhibit glucose incorporation after a second screen. One compound exhibiting a strong inhibition effect (ID 6240780 named chemical A) was selected and further studied. It reversibly inhibits the transfer of glucose from UDP-glucose by Golgi membranes, but activates the plasma membrane-bound callose synthase. The inhibition effect is dependent on the chemical structure of the compound, which does not affect endomembrane morphology of the plant cells, but causes changes in cell wall composition. Chemical A represents a novel drug with a great potential for the study of the mechanisms of Golgi and plasma membrane-bound glucosyltransferases.