Cardiac hypertrophy is an independent risk factor for sudden cardiac death in clinical settings and the incidence of sudden cardiac death and ventricular arrhythmias are closely related.The aim of this study was to de...Cardiac hypertrophy is an independent risk factor for sudden cardiac death in clinical settings and the incidence of sudden cardiac death and ventricular arrhythmias are closely related.The aim of this study was to determine the effects of the calmodulin-dependent protein kinase(CaMK) Ⅱ inhibitor,KN-93,on L-type calcium current(I Ca,L) and early after-depolarizations(EADs) in hypertrophic cardiomyocytes.A rabbit model of myocardial hypertrophy was constructed through abdominal aortic coarctation(LVH group).The control group(sham group) received a sham operation,in which the abdominal aortic was dissected but not coarcted.Eight weeks later,the degree of left ventricular hypertrophy(LVH) was evaluated using echocardiography.Individual cardiomyocyte was isolated through collagenase digestion.Action potentials(APs) and I Ca,L were recorded using the perforated patch clamp technique.APs were recorded under current clamp conditions and I Ca,L was recorded under voltage clamp conditions.The incidence of EADs and I ca,L in the hypertrophic cardiomyocytes were observed under the conditions of low potassium(2 mmol/L),low magnesium(0.25 mmol/L) Tyrode’s solution perfusion,and slow frequency(0.25-0.5 Hz) electrical stimulation.The incidence of EADs and I ca,L in the hypertrophic cardiomyocytes were also evaluated after treatment with different concentrations of KN-92(KN-92 group) and KN-93(KN-93 group).Eight weeks later,the model was successfully established.Under the conditions of low potassium,low magnesium Tyrode’s solution perfusion,and slow frequency electrical stimulation,the incidence of EADs was 0/12,11/12,10/12,and 5/12 in sham group,LVH group,KN-92 group(0.5 μmol/L),and KN-93 group(0.5 μmol/L),respectively.When the drug concentration was increased to 1 μmol/L in KN-92 group and KN-93 group,the incidence of EADs was 10/12 and 2/12,respectively.At 0 mV,the current density was 6.7±1.0 and 6.3±0.7 PA·PF-1 in LVH group and sham group,respectively(P>0.05,n=12).When the drug concentration was 0.5 μmol/L in KN-92 and KN-93 groups,the peak I Ca,L at 0 mV was decreased by(9.4±2.8)% and(10.5±3.0)% in the hypertrophic cardiomyocytes of the two groups,respectively(P>0.05,n=12).When the drug concentration was increased to 1 μmol/L,the peak I Ca,L values were lowered by(13.4±3.7)% and(40±4.9)%,respectively(P<0.01,n=12).KN-93,a specific inhibitor of CaMKII,can effectively inhibit the occurrence of EADs in hypertrophic cardiomyocytes partially by suppressing I Ca,L,which may be the main action mechanism of KN-93 antagonizing the occurrence of ventricular arrhythmias in hypertrophic myocardium.展开更多
Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal ne...Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal neurons to model mi R-219 overexpression.A protective effect of mi R-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons,and an underlying mechanism involving calmodulin-dependent protein kinase II γ(Ca MKIIγ) was demonstrated.mi R-219 and Ca MKIIγ m RNA expression induced by glutamate in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction(q RT-PCR).After neurons were transfected with mi R-219 mimic,effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT) assay and flow cytometry.In addition,a luciferase reporter gene system was used to confirm Ca MKIIγ as a target gene of mi R-219.Western blot assay and rescue experiments were also utilized to detect Ca MKIIγ expression and further verify that mi R-219 in hippocampal neurons exerted its effect through regulation of Ca MKIIγ.MTT assay and q RT-PCR results revealed obvious decreases in cell viability and mi R-219 expression after glutamate stimulation,while Ca MKIIγ m RNA expression was increased.MTT,flow cytometry,and caspase-3 activity assays showed that mi R-219 overexpression could elevate glutamate-induced cell viability,and reduce cell apoptosis and caspase-3 activity.Moreover,luciferase Ca MKIIγ-reporter activity was remarkably decreased by co-transfection with mi R-219 mimic,and the results of a rescue experiment showed that Ca MKIIγ overexpression could reverse the biological effects of mi R-219.Collectively,these findings verify that mi R-219 expression was decreased in glutamate-induced neurons,Ca MKIIγ was a target gene of mi R-219,and mi R-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling Ca MKIIγ expression.展开更多
AIM To investigate the role of calmodulin-dependent protein kinase Ⅱ(Ca MKⅡ) in colon cancer growth,migration and invasion.METHODS Ca MKⅡ expression in colon cancer and paracancerous tissues was evaluated via immun...AIM To investigate the role of calmodulin-dependent protein kinase Ⅱ(Ca MKⅡ) in colon cancer growth,migration and invasion.METHODS Ca MKⅡ expression in colon cancer and paracancerous tissues was evaluated via immunochemistry. Transcriptional and posttranscriptional levels of Ca MKⅡin tissue samples and MMP2,MMP9 and TIMP-1 expression in the human colon cancer cell line HCT116 were assessed by q RTPCR and western blot. Cell proliferation was detected with the MTT assay. Cancer cell migration and invasion were investigated with the Transwell culture system and woundhealing assay.RESULTS We first demonstrated that CaMK Ⅱ was ove rexpressed in human colon cancers and was associated with cancer differentiation. In the human colon cancer cell line HCT116,the Ca MKII-specific inhibitor KN93,but not its inactive analogue KN92,decreased cancer cell proliferation. Furthermore,KN93 also significantly prohibited HCT116 cell migration and invasion. The specific inhibition of ERK1/2 or p38 decreased the proliferation and migration of colon cancer cells.CONCLUSION Our findings highlight Ca MKⅡ as a potential critical mediator in human colon tumor development and metastasis.展开更多
In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-asparti...In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-aspartic acid-induced injury. Results showed that, compared with N-methyi-D- aspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 pM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.展开更多
AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) a...AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) and pancreatic stress kinase activity was determined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology. RESULTS: JNK inhibition with CEP1347 ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580 aggravated pancreatitis with higher trypsin levels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation. Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis. CONCLUSION: Stress kinases modulate pancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.展开更多
Using nystatin-perforated whole-cell recording configuration, the modulatory effect of N-methyl-D-aspartate (NMDA) on γ-aminobutyric acid (GABA)-activated whole-cell currents was investigated in neurons freshly disso...Using nystatin-perforated whole-cell recording configuration, the modulatory effect of N-methyl-D-aspartate (NMDA) on γ-aminobutyric acid (GABA)-activated whole-cell currents was investigated in neurons freshly dissociated from the rat sacral dorsal commissural nucleus (SDCN). The results showed that: (i) NMDA suppressed GABA- and muscimol (Mus)-activated currents (IGABA and IMUS), respectively in the Mg2+-free external solution containing 1 μmol/L glycine at a holding potential (VH) of -40 mV in SDCN neurons. The selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV, 100 μmol/L), inhibited the NMDA-evoked currents and blocked the NMDA-induced suppression of IGABA; (ii) when the neurons were incubated in a Ca2+-free bath or pre-loaded with a membrane-permeable Ca2+ chelator, BAPTA AM (10 nmol/L), the inhibitory effect of NMDA on IGABA disappeared. Cd2+ (10 μmol/L) or La3+(30 μmol/L), the non-selective blockers of voltage-dependent calcium channels, did not affect the suppression of IGABA by NMDA application; (iii) the suppression of IGABA by NMDA was inhibited by KN-62, a cal-cium/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results indicated that the inhibition of GABA response by NMDA is Ca2+-dependent and CaMKII is involved in the process of the Ca2+-dependent inhibition.展开更多
A calmodulin-dependent protein kinase (MCK1) appeared important in regulating flowering in tobacco. The expression of modified MCK1 that lacks the C-terminal including calmodulin-binding domain upsets the flowering de...A calmodulin-dependent protein kinase (MCK1) appeared important in regulating flowering in tobacco. The expression of modified MCK1 that lacks the C-terminal including calmodulin-binding domain upsets the flowering developmental program, leading to the abortion of flower primordia initiated on the main axis of the plant and, as well, caused the prolongation of the vegetative phase in axillary buds. The abortion process of flowers began first in the developing anthers and subsequently the entire flower senesces. In axillary buds the prolonged vegetative phase was characterized by atypical elongated, narrow, twisted leaves. These results suggested a role for calmodulin-dependent protein kinase homologs in mediating flowering.展开更多
目的:探讨1,4,5-三磷酸肌醇1型受体(inositol 1,4,5-trisphosphate receptor type 1,IP3R1)调控钙/钙调蛋白依赖性蛋白激酶Ⅱ(calcium/calmodulin-dependent protein kinaseⅡ,CaMKⅡ)和电压依赖性阴离子通道1(voltage-dependent anion ...目的:探讨1,4,5-三磷酸肌醇1型受体(inositol 1,4,5-trisphosphate receptor type 1,IP3R1)调控钙/钙调蛋白依赖性蛋白激酶Ⅱ(calcium/calmodulin-dependent protein kinaseⅡ,CaMKⅡ)和电压依赖性阴离子通道1(voltage-dependent anion channel 1,VDAC1)在海洛因(heroin,HE)致心肌细胞节律异常中的作用。方法:联合蛋白组学和GEO(Gene Expression Omnibus)数据库分析心律失常芯片数据,寻找关键调控因子。构建IP3R1基因敲减慢病毒并感染原代乳大鼠心肌细胞(neonatal rat cardiomyocytes,NRCMs),实验分为对照(control)组、HE组和HE+shIP3R1组。结晶紫染色观察心肌细胞形态;ELISA法检测乳酸脱氢酶(lactate dehydrogenase,LDH)和天冬氨酸转氨酶(aspartate aminotransferase,AST)水平;透射电镜观察线粒体形态学变化;Fluo-4/AM探针法检测细胞内Ca^(2+)浓度;DCFH-DA荧光探针检测细胞内活性氧(reactive oxygen species,ROS)含量;JC-1染色法检测线粒体膜电位(mitochondrial membrane potential,MMP)水平;ATP检测试剂盒检测细胞内ATP水平;免疫共沉淀(co-immunopre-cipitation,Co-IP)分析IP3R1与CaMKⅡδ和VDAC1蛋白之间的相互作用;Western blot检测IP3R1、CaMKⅡδ、p-CaM-KⅡδ(T287)和VDAC1的蛋白水平。结果:结合蛋白质组学和基因表达谱数据集GSE89410分析,筛选得到80个差异共表达分子,基于基因本体论(Gene Ontology,GO)功能注释和京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)富集分析结果,最终筛选出关键因子IP3R1,且通过STRING数据库获得IP3R1结合蛋白:CaMKⅡδ和VDAC1。Co-IP结果验证IP3R1与CaMKⅡδ和VDAC1存在相互作用,且HE干预后NRCMs中IP3R1与CaMKⅡδ和VDAC1之间的相互作用增强。体外细胞实验显示,与control组相比,HE组NRCMs数量急剧减少,细胞膜变窄,伪足减少,细胞核结构模糊;LDH和AST水平均显著上升(P<0.05);线粒体超微结构损伤严重,证实HE对NRCMs具有毒性作用并导致线粒体损伤。与control组相比,HE组心肌细胞内Ca^(2+)浓度、ROS水平、MMP以及IP3R1、p-CaMKⅡδ(T287)和VDAC1蛋白水平均显著升高(P<0.05),而HE+shIP3R1组这些指标均显著减低(P<0.05);ATP水平则相反。这证实沉默IP3R1表达可减轻HE干预后NRCMs的钙超载及线粒体损伤。结论:IP3R1通过调控CaMKⅡ和VDAC1引起心肌细胞钙超载和ROS生成增多,参与HE诱导的心肌细胞节律异常。展开更多
Many of the effects of Ca^2+ signaling are mediated through the Ca^2+/calmodulin complex and its acceptors, the Ca^2+/calmodulin-dependent protein kinases, including PSKHI. Studies of the proteins involved in the c...Many of the effects of Ca^2+ signaling are mediated through the Ca^2+/calmodulin complex and its acceptors, the Ca^2+/calmodulin-dependent protein kinases, including PSKHI. Studies of the proteins involved in the calcium metabolism in oysters will help elucidate the pearl formation mechanism. This paper describes a full-length PSKH1 cDNA isolated from pearl oyster Pinctada fucata. Oyster PSKH1 shares 65% homology with human PSKH1 and 48% similarity with rat CaM kinase I in the amino acid sequence, and contains a calmodulin-binding domain. The results of semi-quantitative reverse transcription-polymerase chain reaction and in situ hybridization revealed that oyster PSKH1 mRNA is highly expressed in the outer epithelial cells of the mantle pallial and in the gill epithelial cells. These studies provide important information describing the complex Ca^2+ signaling mechanism in oyster calcium metabolism.展开更多
基金supported by grants from the Fujian Provincial Natural Science Foundation of China (No. 2008J0075)the Fujian Provincial Science and Technology Project of China(No. 2010Y0011)
文摘Cardiac hypertrophy is an independent risk factor for sudden cardiac death in clinical settings and the incidence of sudden cardiac death and ventricular arrhythmias are closely related.The aim of this study was to determine the effects of the calmodulin-dependent protein kinase(CaMK) Ⅱ inhibitor,KN-93,on L-type calcium current(I Ca,L) and early after-depolarizations(EADs) in hypertrophic cardiomyocytes.A rabbit model of myocardial hypertrophy was constructed through abdominal aortic coarctation(LVH group).The control group(sham group) received a sham operation,in which the abdominal aortic was dissected but not coarcted.Eight weeks later,the degree of left ventricular hypertrophy(LVH) was evaluated using echocardiography.Individual cardiomyocyte was isolated through collagenase digestion.Action potentials(APs) and I Ca,L were recorded using the perforated patch clamp technique.APs were recorded under current clamp conditions and I Ca,L was recorded under voltage clamp conditions.The incidence of EADs and I ca,L in the hypertrophic cardiomyocytes were observed under the conditions of low potassium(2 mmol/L),low magnesium(0.25 mmol/L) Tyrode’s solution perfusion,and slow frequency(0.25-0.5 Hz) electrical stimulation.The incidence of EADs and I ca,L in the hypertrophic cardiomyocytes were also evaluated after treatment with different concentrations of KN-92(KN-92 group) and KN-93(KN-93 group).Eight weeks later,the model was successfully established.Under the conditions of low potassium,low magnesium Tyrode’s solution perfusion,and slow frequency electrical stimulation,the incidence of EADs was 0/12,11/12,10/12,and 5/12 in sham group,LVH group,KN-92 group(0.5 μmol/L),and KN-93 group(0.5 μmol/L),respectively.When the drug concentration was increased to 1 μmol/L in KN-92 group and KN-93 group,the incidence of EADs was 10/12 and 2/12,respectively.At 0 mV,the current density was 6.7±1.0 and 6.3±0.7 PA·PF-1 in LVH group and sham group,respectively(P>0.05,n=12).When the drug concentration was 0.5 μmol/L in KN-92 and KN-93 groups,the peak I Ca,L at 0 mV was decreased by(9.4±2.8)% and(10.5±3.0)% in the hypertrophic cardiomyocytes of the two groups,respectively(P>0.05,n=12).When the drug concentration was increased to 1 μmol/L,the peak I Ca,L values were lowered by(13.4±3.7)% and(40±4.9)%,respectively(P<0.01,n=12).KN-93,a specific inhibitor of CaMKII,can effectively inhibit the occurrence of EADs in hypertrophic cardiomyocytes partially by suppressing I Ca,L,which may be the main action mechanism of KN-93 antagonizing the occurrence of ventricular arrhythmias in hypertrophic myocardium.
基金supported by the National Natural Science Foundation of China,No.81101159the Natural Science Foundation of Jiangsu Province of China,No.BK20151268
文摘Septic encephalopathy is a frequent complication of sepsis,but there are few studies examining the role of micro RNAs(mi Rs) in its pathogenesis.In this study,a mi R-219 mimic was transfected into rat hippocampal neurons to model mi R-219 overexpression.A protective effect of mi R-219 was observed for glutamate-induced neurotoxicity of rat hippocampal neurons,and an underlying mechanism involving calmodulin-dependent protein kinase II γ(Ca MKIIγ) was demonstrated.mi R-219 and Ca MKIIγ m RNA expression induced by glutamate in hippocampal neurons was determined by quantitative real-time reverse transcription-polymerase chain reaction(q RT-PCR).After neurons were transfected with mi R-219 mimic,effects on cell viability and apoptosis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT) assay and flow cytometry.In addition,a luciferase reporter gene system was used to confirm Ca MKIIγ as a target gene of mi R-219.Western blot assay and rescue experiments were also utilized to detect Ca MKIIγ expression and further verify that mi R-219 in hippocampal neurons exerted its effect through regulation of Ca MKIIγ.MTT assay and q RT-PCR results revealed obvious decreases in cell viability and mi R-219 expression after glutamate stimulation,while Ca MKIIγ m RNA expression was increased.MTT,flow cytometry,and caspase-3 activity assays showed that mi R-219 overexpression could elevate glutamate-induced cell viability,and reduce cell apoptosis and caspase-3 activity.Moreover,luciferase Ca MKIIγ-reporter activity was remarkably decreased by co-transfection with mi R-219 mimic,and the results of a rescue experiment showed that Ca MKIIγ overexpression could reverse the biological effects of mi R-219.Collectively,these findings verify that mi R-219 expression was decreased in glutamate-induced neurons,Ca MKIIγ was a target gene of mi R-219,and mi R-219 alleviated glutamate-induced neuronal excitotoxicity by negatively controlling Ca MKIIγ expression.
基金Supported by the National Natural Science Foundation of China,No.81302131
文摘AIM To investigate the role of calmodulin-dependent protein kinase Ⅱ(Ca MKⅡ) in colon cancer growth,migration and invasion.METHODS Ca MKⅡ expression in colon cancer and paracancerous tissues was evaluated via immunochemistry. Transcriptional and posttranscriptional levels of Ca MKⅡin tissue samples and MMP2,MMP9 and TIMP-1 expression in the human colon cancer cell line HCT116 were assessed by q RTPCR and western blot. Cell proliferation was detected with the MTT assay. Cancer cell migration and invasion were investigated with the Transwell culture system and woundhealing assay.RESULTS We first demonstrated that CaMK Ⅱ was ove rexpressed in human colon cancers and was associated with cancer differentiation. In the human colon cancer cell line HCT116,the Ca MKII-specific inhibitor KN93,but not its inactive analogue KN92,decreased cancer cell proliferation. Furthermore,KN93 also significantly prohibited HCT116 cell migration and invasion. The specific inhibition of ERK1/2 or p38 decreased the proliferation and migration of colon cancer cells.CONCLUSION Our findings highlight Ca MKⅡ as a potential critical mediator in human colon tumor development and metastasis.
基金supported by Liaoning Social Development Key Projects of Scientific and Technological Department of Liaoning Province, No. 2012225019
文摘In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-aspartic acid-induced injury. Results showed that, compared with N-methyi-D- aspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 pM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.
文摘AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) and pancreatic stress kinase activity was determined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology. RESULTS: JNK inhibition with CEP1347 ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580 aggravated pancreatitis with higher trypsin levels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation. Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis. CONCLUSION: Stress kinases modulate pancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.
文摘Using nystatin-perforated whole-cell recording configuration, the modulatory effect of N-methyl-D-aspartate (NMDA) on γ-aminobutyric acid (GABA)-activated whole-cell currents was investigated in neurons freshly dissociated from the rat sacral dorsal commissural nucleus (SDCN). The results showed that: (i) NMDA suppressed GABA- and muscimol (Mus)-activated currents (IGABA and IMUS), respectively in the Mg2+-free external solution containing 1 μmol/L glycine at a holding potential (VH) of -40 mV in SDCN neurons. The selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV, 100 μmol/L), inhibited the NMDA-evoked currents and blocked the NMDA-induced suppression of IGABA; (ii) when the neurons were incubated in a Ca2+-free bath or pre-loaded with a membrane-permeable Ca2+ chelator, BAPTA AM (10 nmol/L), the inhibitory effect of NMDA on IGABA disappeared. Cd2+ (10 μmol/L) or La3+(30 μmol/L), the non-selective blockers of voltage-dependent calcium channels, did not affect the suppression of IGABA by NMDA application; (iii) the suppression of IGABA by NMDA was inhibited by KN-62, a cal-cium/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results indicated that the inhibition of GABA response by NMDA is Ca2+-dependent and CaMKII is involved in the process of the Ca2+-dependent inhibition.
基金the National Basic Research Program (Grant No. G1999 0116), theNational Science Fund for Outstanding Youth (Grant No. 39725015), the National Natural Science Foundation of China (Grant No. 39780015), the National Fund for Transgenic Project (Grant No.
文摘A calmodulin-dependent protein kinase (MCK1) appeared important in regulating flowering in tobacco. The expression of modified MCK1 that lacks the C-terminal including calmodulin-binding domain upsets the flowering developmental program, leading to the abortion of flower primordia initiated on the main axis of the plant and, as well, caused the prolongation of the vegetative phase in axillary buds. The abortion process of flowers began first in the developing anthers and subsequently the entire flower senesces. In axillary buds the prolonged vegetative phase was characterized by atypical elongated, narrow, twisted leaves. These results suggested a role for calmodulin-dependent protein kinase homologs in mediating flowering.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 2003AA603430) and the National Natural Science Foundation of China (No. 30371092)
文摘Many of the effects of Ca^2+ signaling are mediated through the Ca^2+/calmodulin complex and its acceptors, the Ca^2+/calmodulin-dependent protein kinases, including PSKHI. Studies of the proteins involved in the calcium metabolism in oysters will help elucidate the pearl formation mechanism. This paper describes a full-length PSKH1 cDNA isolated from pearl oyster Pinctada fucata. Oyster PSKH1 shares 65% homology with human PSKH1 and 48% similarity with rat CaM kinase I in the amino acid sequence, and contains a calmodulin-binding domain. The results of semi-quantitative reverse transcription-polymerase chain reaction and in situ hybridization revealed that oyster PSKH1 mRNA is highly expressed in the outer epithelial cells of the mantle pallial and in the gill epithelial cells. These studies provide important information describing the complex Ca^2+ signaling mechanism in oyster calcium metabolism.