期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Cambering on the Aerodynamic Performance of Heaving Airfoils 被引量:3
1
作者 Joel E.Guerrero 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第4期398-404,406-407,共9页
In the present work,a parametric numerical study is conducted in order to assess the effect of airfoil cambering on the aerodynamic performance of rigid heaving airfoils.The incompressible Navier-Stokes equations are ... In the present work,a parametric numerical study is conducted in order to assess the effect of airfoil cambering on the aerodynamic performance of rigid heaving airfoils.The incompressible Navier-Stokes equations are solved in their velocity-pressure formulation using a second-order accurate in space and time finite-difference scheme.To tackle the problem of moving boundaries,the governing equations are solved on overlapping structured grids.The numerical simulations are performed at a Reynolds number of Re=1100 and at different values of Strouhal number and reduced frequency.The results obtained show that the airfoil cambering geometric parameter has a strong influence on the average lift coefficient,while it has a smaller impact on the average thrust coefficient and propulsive efficiency of heaving airfoils. 展开更多
关键词 heaving airfoils structured overlapping grids incompressible Navier-Stokes equations airfoil cambering
下载PDF
Design of a large-scale model for wind tunnel test of a multiadaptive flap concept
2
作者 Mürüvvet Sinem SICIM DEMIRCI Rosario PECORA Metin Orhan KAYA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第2期58-80,共23页
The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced techno... The design and application of morphing systems are ongoing issues compelling the aviation industry.The Clean Sky-program represents the most significant aeronautical research ever launched in Europe on advanced technologies for greening next-generation aircraft.The primary purpose of the program is to develop new concepts aimed at decreasing the effects of aviation on the environment,increasing reliability,and promoting eco-friendly mobility.These ambitions are pursued through research on enabling technologies fostering noise and gas emissions reduction,mainly by improving aircraft aerodynamic performances.Within the Clean Sky framework,a multimodal morphing flap device was designed based on tight industrial requirements and tailored for large civil aircraft applications.The flap is deployed in one unique setting,and its cross section is morphed differently in take-off and landing to get the necessary extra lift for the specific flight phase.Moreover,during the cruise,the tip of the flap is deflected for load control and induced drag reduction.Before manufacturing the first flap prototype,a high-speed(Ma=0.3),large-scale test campaign(geometric scale factor 1:3)was deemed necessary to validate the performance improvements brought by this novel system at the aircraft level.On the other hand,the geometrical scaling of the flap prototype was considered impracticable due to the unscalability of the embedded mechanisms and actuators for shape transition.Therefore,a new architecture was conceived for the flap model to comply with the scaled dimensions requirements,withstand the relevant loads expected during the wind tunnel tests and emulate the shape transition capabilities of the true-scale flap.Simplified strategies were developed to effectively morph the model during wind tunnel tests while ensuring the robustness of each morphed configuration and maintaining adequate stiffness levels to prevent undesirable deviations from the intended aerodynamic shapes.Additionally,a simplified design was conceived for the flap-wing interface,allowing for quick adjustments of the flap setting and enabling load transmission paths like those arising between the full-scale flap and the wing.The design process followed for the definition of this challenging wind tunnel model has been addressed in this work,covering the definition of the conceptual layout,the numerical evaluation of the most severe loads expected during the test,and the verification of the structural layout by means of advanced finite element analyses. 展开更多
关键词 Morphing structures Smart aircraft Morphing flap Adaptive systems Finger-like ribs Wind tunnel tests Large-scale morphing archi-tectures Variable camber airfoil
原文传递
Morphing wing flaps for large civil aircraft:Evolution of a smart technology across the Clean Sky program 被引量:9
3
作者 Rosario Pecora 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期13-28,共16页
Abstract Morphing wing structures are widely considered among the most promising technologies for the improvement of aerodynamic performances in large civil aircraft.The controlled adaptation of the wing shape to exte... Abstract Morphing wing structures are widely considered among the most promising technologies for the improvement of aerodynamic performances in large civil aircraft.The controlled adaptation of the wing shape to external operative conditions naturally enables the maximization of aircraft aerodynamic efficiency,with positive fallouts on the amount of fuel burned and pollutant emissions.The benefits brought by morphing wings at aircraft level are accompanied by the criticalities of the enabling technologies,mainly involving weight penalties,overconsumption of electrical power,and safety issues.The attempt to solve such criticalities passes through the development of novel design approaches,ensuring the consolidation of reliable structural solutions that are adequately mature for certification and in-flight operations.In this work,the development phases of a multimodal camber morphing wing flap,tailored for large civil aircraft applications,are outlined with specific reference to the activities addressed by the author in the framework of the Clean Sky program.The flap is morphed according to target shapes depending on aircraft flight conditions and defined to enhance high-lift performances during takeoff and landing,as well as wing aerodynamic efficiency during cruise.An innovative system based on finger-like robotic ribs driven by electromechanical actuators is proposed as morphing-enabling technology;the maturation process of the device is then traced from the proof of concept to the consolidation of a true-scale demonstrator for pre-flight ground validation tests.A step-by-step approach involving the design and testing of intermediate demonstrators is then carried out to show the compliance of the adaptive system with industrial standards and safety requirements.The technical issues encountered during the development of each intermediate demonstrator are critically analyzed,and justifications are provided for all the adopted engineering solutions.Finally,the layout of the true-scale demonstrator is presented,with emphasis on the architectural strengths,enabling the forthcoming validation in real operative conditions. 展开更多
关键词 Electro-mechanical actuators(EMA) Green regional aircraft Mechanical systems Morphing flap Morphing wing Smart aircraft Smart structures Variable camber airfoil
原文传递
Aerodynamic optimization and mechanism design of flexible variable camber trailing-edge flap 被引量:12
4
作者 Weishuang LU Yun TIAN Peiqing LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期988-1003,共16页
Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camb... Trailing-edge flap is traditionally used to improve the takeoff and landing aerodynamic performance of aircraft.In order to improve flight efficiency during takeoff,cruise and landing states,the flexible variable camber trailing-edge flap is introduced,capable of changing its shape smoothly from 50% flap chord to the rear of the flap.Using a numerical simulation method for the case of the GA(W)-2 airfoil,the multi-objective optimization of the overlap,gap,deflection angle,and bending angle of the flap under takeoff and landing configurations is studied.The optimization results show that under takeoff configuration,the variable camber trailing-edge flap can increase lift coefficient by about 8% and lift-to-drag ratio by about 7% compared with the traditional flap at a takeoff angle of 8°.Under landing configuration,the flap can improve the lift coefficient at a stall angle of attack about 1.3%.Under cruise state,the flap helps to improve the lift-todrag ratio over a wide range of lift coefficients,and the maximum increment is about 30%.Finally,a corrugated structure–eccentric beam combination bending mechanism is introduced in this paper to bend the flap by rotating the eccentric beam. 展开更多
关键词 Aerodynamic optimization GA(W)-2 airfoil Mechanism design Trailing-edge flap Variable camber
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部