A multifunctional nanocomposite of AgNPs@GQDs is prepared by synergistic in-situ growth of silver nanoparticles(AgNPs)on the complex of tannic acid(TA)and graphene quantum dots(GQDs)for the construction of dual-mode b...A multifunctional nanocomposite of AgNPs@GQDs is prepared by synergistic in-situ growth of silver nanoparticles(AgNPs)on the complex of tannic acid(TA)and graphene quantum dots(GQDs)for the construction of dual-mode biosensing platform and cancer theranostics.The nanocomposite exhibits a hydrogen peroxide(H_(2)O_(2))-responsive degradation,in which Ag^(0)is oxidized to Ag^(+)along with the release of oxidized TA and GQDs.The degradation induces the decreased absorbance and enhanced fluorescence(FL)intensity due to the suppression of Forster resonance ene rgy transfer(FRET)in AgNPs@GQDs,which is employed for colorimetric/fluorescence dual-mode sensing of H_(2)O_(2).The intrinsic peroxidase-like activity of GQDs nanozyme can effectively catalyze the oxidation reaction,enhancing the detection sensitivity significantly.Based on the generation of H_(2)O_(2)from the oxidation of glucose with the catalysis of glucose oxidase(GOx),this nanoprobe is versatilely used for the determination of glucose in human serum.Further,through combining the H_(2)O_(2)-responsive degradation of AgNPs@GQDs with high H_(2)O_(2)level in cancer cells,the nanocomposites exhibit good performance in cancer cell recognition and therapy,in which the synergistic anticancer effect of Ag^(+)and oxidized TA contribute to effective cell death,and the liberated GQDs are used to monitor the therapeutic effect by cell imaging.展开更多
基金supported by the National Natural Science Foundation of China(Nos.21722505 and 21705086)the Special Funds of the Taishan Scholar Program of Shandong Province(No.tsqn20161028)+4 种基金the Youth Innovation Technology Program of Shandong Province(No.2019KJC029)the Natural Science Foundation of Shandong Province(No.ZR2017JL009)the Collaborative Innovation Program of Jinan(No.2018GXRC033)the Open Project of Shandong Key Laboratory of Tumor Marker Detection Technology(Nos.KLDTTM2019-4,KLDTTM2019-5)the Open Project of Chemistry Department of Qingdao University of Science and Technology(No.QUSTHX201928)。
文摘A multifunctional nanocomposite of AgNPs@GQDs is prepared by synergistic in-situ growth of silver nanoparticles(AgNPs)on the complex of tannic acid(TA)and graphene quantum dots(GQDs)for the construction of dual-mode biosensing platform and cancer theranostics.The nanocomposite exhibits a hydrogen peroxide(H_(2)O_(2))-responsive degradation,in which Ag^(0)is oxidized to Ag^(+)along with the release of oxidized TA and GQDs.The degradation induces the decreased absorbance and enhanced fluorescence(FL)intensity due to the suppression of Forster resonance ene rgy transfer(FRET)in AgNPs@GQDs,which is employed for colorimetric/fluorescence dual-mode sensing of H_(2)O_(2).The intrinsic peroxidase-like activity of GQDs nanozyme can effectively catalyze the oxidation reaction,enhancing the detection sensitivity significantly.Based on the generation of H_(2)O_(2)from the oxidation of glucose with the catalysis of glucose oxidase(GOx),this nanoprobe is versatilely used for the determination of glucose in human serum.Further,through combining the H_(2)O_(2)-responsive degradation of AgNPs@GQDs with high H_(2)O_(2)level in cancer cells,the nanocomposites exhibit good performance in cancer cell recognition and therapy,in which the synergistic anticancer effect of Ag^(+)and oxidized TA contribute to effective cell death,and the liberated GQDs are used to monitor the therapeutic effect by cell imaging.