Proteolysis targeting chimeras (PROTACs) have recently emerged as promising therapeutic agents for cancer therapy. However, their clinical application is considerably hindered by the poor membrane permeability and ins...Proteolysis targeting chimeras (PROTACs) have recently emerged as promising therapeutic agents for cancer therapy. However, their clinical application is considerably hindered by the poor membrane permeability and insufficient tumor distribution of PROTACs. Here we proposed a nanoengineered targeting strategy to construct a self-assembled affibody-PROTAC conjugate nanomedicine (APCN) for tumor-specific delivery of PROTACs. As proof of concept, a hydrophobic PROTAC MZ1 (a bromodomain-containing protein 4 degrader) was selected to couple with a hydrophilic affibody ZHER2:342 (an affinity protein of human epidermal growth factor receptor 2, HER2) via a smart linker containing disulfide bond to form an amphiphilic ZHER2:342-MZ1 conjugate. It spontaneously self-assembled into nanoparticles (ZHER2:342-MZ1 APCN) in water. Upon the excellent targeting property of ZHER2:342 and HER2 receptor-mediated endocytosis, ZHER2:342-MZ1 APCN was accumulated in tumor sites and internalized by cancer cells effectively in vitro. Under the intracellular high level of glutathione (GSH), ZHER2:342-MZ1 APCN released MZ1 to specifically degrade bromodomain-containing protein 4 (BRD4) and subsequently induced BRD4 deficiency-mediated apoptosis of cancer cells. By the tail-vein injection, ZHER2:342-MZ1 APCN showed the outstanding tumor-specific targeting ability, drug accumulation capacity, enhanced BRD4 degradation and antitumor efficacy in vivo for an HER2-positive SKOV-3 tumor model. Such an affibody mediated nanoengineered strategy would facilitate the application of PROTACs for targeted cancer therapy.展开更多
Transdermal drug delivery offers a promising alternative to traditional cancer therapies by providing a non-invasive,controlled,and targeted delivery of therapeutic agents.This paper explores the advancements,benefits...Transdermal drug delivery offers a promising alternative to traditional cancer therapies by providing a non-invasive,controlled,and targeted delivery of therapeutic agents.This paper explores the advancements,benefits,and challenges associated with transdermal drug delivery systems(TDDS)in cancer treatment.It highlights the mechanisms of action,key technologies,and the potential impact on patient outcomes.By examining recent studies and clinical trials,this paper aims to provide a comprehensive overview of the efficacy,safety,and prospects of transdermal drug delivery in oncology.展开更多
Nano drug delivery systems have made significant progress in delivering anticancer drugs camptothecin(CPT).However,many challenges for CPT delivery remain,including low drug loading efficiency,premature drug leakage,a...Nano drug delivery systems have made significant progress in delivering anticancer drugs camptothecin(CPT).However,many challenges for CPT delivery remain,including low drug loading efficiency,premature drug leakage,and poor cellular internalization.Herein,we report a novel dual-sensitive polypeptide-based micelle with remarkably high drug loading of CPT for cancer therapy.This self-assembled micelle possesses the following essential components for CPT:(1)pH-sensitive PEG(OHC-PEG-CHO)for prolonging blood circulation and allowing biocompatibility by shielding the cationic micelles,which can be detached under the tumor acidic microenvironment and facilitates the cellular uptake;(2)polypeptide polylysine-polyphenylalanine(PKF)synthesized via ring-opening polymerization for micelle formation and CPT analogue loading;(3)dimeric CPT(DCPT)with redox-sensitive linker for increasing CPT loading and ensuring drug release at tumor sites.Interestingly,the linear-like morphology of PEG-PKF/DCPT micelles was able to enhance their cellular internalization when compared with the spherical blank PKF micelles.Also,the anticancer efficacy of DCPT against lung cancer cells was significantly improved by the micelle formation.In conclusion,this work provides a promising strategy facilitating the safety and effective application of CPT in cancer therapy.展开更多
Toll-like receptors (TLRs) are germ line encoded innate immune sensors that recognize conserved microbial structures and host alarmins, and signal expression of major histocompatibility complex proteins, costimulatory...Toll-like receptors (TLRs) are germ line encoded innate immune sensors that recognize conserved microbial structures and host alarmins, and signal expression of major histocompatibility complex proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These protein receptors are characterized by their ability to respond to invading pathogens promptly by recognizing particular TLR ligands, including flagellin and lipopolysaccharide of bacteria, nucleic acids derived from viruses, and zymosan of fungi. There are 2 major TLR pathways; one is mediated by myeloid differentiation factor 88 (MYD88) adaptor proteins, and the other is independent of MYD88. The MYD88-dependent pathway involves early-phase activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1) and all the TLRs, except TLR3, have been shown to activate this pathway. TLR3 and TLR4 act via MYD88-independent pathways with delayed activation of NF-κB signaling. TLRs play a vital role in activating immune responses. TLRs have been shown to mediate inflammatory responses and maintain epithelial barrier homeostasis, and are highly likely to be involved in the activation of a number of pathways following cancer therapy. Colorectal cancer (CRC) is one of the most common cancers, and accounts for almost half a million deaths annually worldwide. Inflammation is considered a risk factor for many common malignancies including cancers of the colorectum. The key molecules involved in inflammation-driven carcinogenesis include TLRs. As sensors of cell death and tissue remodeling, TLRs may have a universal role in cancer; stimulation of TLRs to activate the innate immune system has been a legitimate therapeutic strategy for some years. TLRs 3/4/7/8/9 are all validated targets for cancer therapy, and a number of companies are developing agonists and vaccine adjuvants. On the other hand, antagonists may favor inhibition of signaling responsible for autoimmune responses. In this paper, we review TLR signaling in CRC from carcinogenesis to cancer therapy.展开更多
The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, p...The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years.展开更多
Since the discovery of the Nobel prize-winning mechanism of RNA interference(RNAi)ten years ago,it has become a promising drug target for the treatment of multiple diseases,including cancer.There have already been som...Since the discovery of the Nobel prize-winning mechanism of RNA interference(RNAi)ten years ago,it has become a promising drug target for the treatment of multiple diseases,including cancer.There have already been some successful applications of siRNA drugs in the treatment of age-related macular degeneration and respiratory syncytial virus infection.However,significant barriers still exist on the road to clinical applications of siRNA drugs,including poor cellular uptake,instability under physiological conditions,off-target effects and possible immunogenicity.The successful application of siRNA for cancer therapy requires the development of clinically suitable,safe and effective drug delivery systems.Herein,we review the design criteria for siRNA delivery systems and potential siRNA drug delivery systems for cancer therapy,including chemical modifications,lipidbased nanovectors,polymer-mediated delivery systems,conjugate delivery systems,and others.展开更多
The use of bacteria to specifically migrate to cancerous tissue and elicit an antitumor immune response provides a promising platform against cancer with significantly high potency.With dozens of clinical trials under...The use of bacteria to specifically migrate to cancerous tissue and elicit an antitumor immune response provides a promising platform against cancer with significantly high potency.With dozens of clinical trials underway,some researchers hold the following views:“humans are nearing the first commercial live bacteria therapeutic.”However,the facultative anaerobe Salmonella typhimurium VNP20009,which is particularly safe and shows anticancer effects in preclinical studies,had failed in a phase I clinical trial due to low tumor regression and undesired dose-dependent side effects.This is almost certain to disappoint people’s inflated expectations,but it is noted that recent stateof-the-art research has turned attention to bacteria-mediated synergistic cancer therapy(BMSCT).In this review,the foundation of bacteria-mediated bio-therapy is outlined.Then,we summarize the potential benefits and challenges of bacterial bio-therapy in combination with different traditional anticancer therapeutic modalities(chemotherapy,photothermal therapy,reactive oxygen and nitrogen species therapy,immunotherapy,or prodrug-activating therapy)in the past 5 years.Next,we discuss multiple administration routes of BMSCT,highlighting potentiated antitumor responses and avoidance of potential side effects.Finally,we envision the opportunities and challenges for BMSCT development,with the purpose of inspiring medicinal scientists to widely utilize the microbiome approach in patient populations.展开更多
Natural products,with remarkable chemical diversity,have been extensively investigated for their anticancer potential for more than a half-century.The collective efforts of the community have achieved the tremendous a...Natural products,with remarkable chemical diversity,have been extensively investigated for their anticancer potential for more than a half-century.The collective efforts of the community have achieved the tremendous advancements,bringing natural products to clinical use and discovering new therapeutic opportunities,yet the challenges remain ahead.With remarkable changes in the landscape of cancer therapy and growing role of cutting-edge technologies,we may have come to a crossroads to revisit the strategies to understand nature products and to explore their therapeutic utility.This review summarizes the key advancements in nature product-centered cancer research and calls for the implementation of systematic approaches,new pharmacological models,and exploration of emerging directions to revitalize natural products search in cancer therapy.展开更多
Gemcitabine has been extensively applied in treating various solid tumors. Nonetheless,the clinical performance of gemcitabine is severely restricted by its unsatisfactory pharmacokinetic parameters and easy deactivat...Gemcitabine has been extensively applied in treating various solid tumors. Nonetheless,the clinical performance of gemcitabine is severely restricted by its unsatisfactory pharmacokinetic parameters and easy deactivation mainly because of its rapid deamination, deficiencies in deoxycytidine kinase (DCK), and alterations in nucleoside transporter. On this account, repeated injections with a high concentration of gemcitabine are adopted, leading to severe systemic toxicity to healthy cells. Accordingly, it is highly crucial to fabricate efficient gemcitabine delivery systems to obtain improved therapeutic efficacy of gemcitabine. A large number of gemcitabine pro-drugs were synthesized by chemical modification of gemcitabine to improve its biostability and bioavailability. Besides,gemcitabine-loaded nano-drugs were prepared to improve the delivery efficiency. In this review article, we introduced different strategies for improving the therapeutic performance of gemcitabine by the fabrication of pro-drugs and nano-drugs. We hope this review will provide new insight into the rational design of gemcitabine-based delivery strategies for enhanced cancer therapy.展开更多
Recently, a wide range of food-derived phytochemical compounds and their synthetic derivatives have been proposed for cancer treatment. Unfortunately, data available in related literature focus on the anti-cancer prop...Recently, a wide range of food-derived phytochemical compounds and their synthetic derivatives have been proposed for cancer treatment. Unfortunately, data available in related literature focus on the anti-cancer properties of compounds derived from edible plants, while very little is known about those derived from non-edible plants. And thus, the underlying mechanisms of their anti-cancer effects are yet to be elucidated. This review collates the available data on the anti-cancer activities of six phytochemical-derived compounds from edible and non-edible plants, i.e.展开更多
Nanoparticles(NPs) with easily modified surfaces have been playing an important role in biomedicine.As cancer is one of the major causes of death,tremendous efforts have been devoted to advance the methods of cancer...Nanoparticles(NPs) with easily modified surfaces have been playing an important role in biomedicine.As cancer is one of the major causes of death,tremendous efforts have been devoted to advance the methods of cancer diagnosis and therapy.Recently,magnetic nanoparticles(MNPs) that are responsive to a magnetic field have shown great promise in cancer therapy.Compared with traditional cancer therapy,magnetic field triggered therapeutic approaches can treat cancer in an unconventional but more effective and safer way.In this review,we will discuss the recent progress in cancer therapies based on MNPs,mainly including magnetic hyperthermia,magnetic specific targeting,magnetically controlled drug delivery,magnetofection,and magnetic switches for controlling cell fate.Some recently developed strategies such as magnetic resonance imaging(MRI) monitoring cancer therapy and magnetic tissue engineering are also addressed.展开更多
Tumors consist of a mixture of heterogeneous cell types. Cancer stem cells(CSCs) are a minor sub-population within the bulk cancer fraction which has been foundto reconstitute and propagate the disease and to be frequ...Tumors consist of a mixture of heterogeneous cell types. Cancer stem cells(CSCs) are a minor sub-population within the bulk cancer fraction which has been foundto reconstitute and propagate the disease and to be frequently resistant to chemotherapy, irradiation, cytotoxic drugs and probably also against immune attack. CSCs are considered as the seeds of tumor recurrence, driving force of tumorigenesis and metastases. This underlines the urgent need for innovative methods to identify and target CSCs. However, the role and existence of CSCs in therapy resistance and cancer recurrence remains a topic of intense debate. The underlying biological properties of the tumor stem cells are extremely dependent on numerous signals, and the targeted inhibition of these stem cell signaling pathways is one of the promising approaches of the new antitumor therapy approaches. This perspective review article summarizes the novel methods of tracing CSCs and discusses the hallmarks of CSC identification influenced by the microenvironment or by having imperfect detection markers. In addition, explains the known molecular mechanisms of therapy resistance in CSCs as reliable and clinically predictive markers that could enable the use of new targeted antitumor therapy in the sense of personalized medicine.展开更多
Rising worldwide cancer incidence and resistance to current anti-cancer drugs necessitate the need for new pharmaceutical compounds and drug delivery system. Malfunction of the immune system, particularly in the tumor...Rising worldwide cancer incidence and resistance to current anti-cancer drugs necessitate the need for new pharmaceutical compounds and drug delivery system. Malfunction of the immune system, particularly in the tumor microenvironment, causes tumor growth and enhances tumor progression. Thus, cancer immunotherapy can be an appropriate approach to provoke the systemic immune system to combat tumor expansion. Texosomesj which are endogenous nanovesicles released by all tumor cells, contribute to cell-cell communication and modify the phenotypic features of recipient cells due to the texosomes' ability to transport biological components. For this reason, texosome-based delivery system can be a valuable strategy for therapeutic purposes. To improve the pharmaceutical behavior of this system and to facilitate its use in medical applications, biotechnology approaches and mimetic techniques have been utilized. In this review, we present the development history oftexosome-based delivery systems and discuss the advantages and disadvantages of each system.展开更多
Successful cancer therapy depends on selective killing of tumor cells while sparing normal cells. Selectivity can be achieved through treatment strategies that target tumor cells. A recent report from the Li laborato...Successful cancer therapy depends on selective killing of tumor cells while sparing normal cells. Selectivity can be achieved through treatment strategies that target tumor cells. A recent report from the Li laboratory (1) describes an elegant strategy to selectively kill tumor cells by combining several targeting strategies based on cell biological, physical, and molecular (genetic) properties of tumor and normal cells that enhances tumor cell killing in vitro and in an in vivo tumor xenograft model. The idea of using a multiplex targeting approach is reminiscent of strategies in which several antibiotics are used to treat bacterial infections while minimizing the chance that rare antibiotic-resistant mutants will arise within a population.展开更多
The therapeutic strategy that gives consideration to the combination of photodynamic therapy and chemotherapy,has emerged as a potential development of effective anti-cancer medicine.Nevertheless,co-delivery of photos...The therapeutic strategy that gives consideration to the combination of photodynamic therapy and chemotherapy,has emerged as a potential development of effective anti-cancer medicine.Nevertheless,co-delivery of photosensitizers(PSs)and chemotherapeutic drugs in traditional carriers still remains great limitations due to low drug loadings and poor biocompatibility.Herein,we have utilized a computer-aided strategy to achieve a desired carrier-free self-delivery of pyropheophorbide a(PPa,a common PS)and podophyllotoxin(PPT,a classical chemotherapeutic drug)for synergistic cancer therapy.First,the computational simulation method identified the similar molecular sizes and rigid molecular structures between two drugs molecules.Based on the molecular docking,the intermolecular interactions were found to includeπ-πstackings,hydrophobic interactions and hydrogen bonds.Next,both drugs could co-assemble into nanoparticles(NPs)via one-step nanoprecipitation method.The various spectral experiments(UV,IR and FL)were conducted to evaluate the formation mechanism of spherical NPs.Moreover,in vitro and in vivo experiments systematically demonstrated that PPT/PPa NPs not only showed better cellular uptake efficiency,stronger cytotoxicity and higher accumulation in tumor sites,but also exhibited synergistic antitumor effect in female BALB/C bearing-4T1 tumor mice.Such a computer-aided design strategy of chem-photodynamic drugs self-delivery systems pave the way for efficient synergistic cancer therapy.展开更多
Precision medicine aims to identify the right drug, for the right patient, at the right dose, at the right time, which is particularly important in cancer therapy. Problems such as the variability of treatment respons...Precision medicine aims to identify the right drug, for the right patient, at the right dose, at the right time, which is particularly important in cancer therapy. Problems such as the variability of treatment response and resistance to medication have been longstanding challenges in oncology, especially for development of new medications. Solid tumors, unlike hematologic malignancies or brain tumors, are remarkably diverse in their cellular origins and developmental timing. The ability of next-generation sequencing(NGS) to analyze the comprehensive landscape of genetic alterations brings promises to diseases that have a highly complex and heterogeneous genetic composition such as cancer. Here we provide an overview of how NGS is able to facilitate precision medicine and change the paradigm of cancer therapy, especially for solid tumors, through technical advancements, molecular diagnosis, response monitoring and clinical trials.展开更多
Cancer treatments such as chemotherapy and radiotherapy are widely used to treat primary and metastatic cancers.Epidemiological studies have demonstrated that these types of treatment can effectively and successfully ...Cancer treatments such as chemotherapy and radiotherapy are widely used to treat primary and metastatic cancers.Epidemiological studies have demonstrated that these types of treatment can effectively and successfully extend the lifespan of cancer patients,but they are also associated with various neurological complications such as cognitive deficits, seizures, and emotional problems (Taphoorn and Klein, 2004; Yang and Moon, 2013; Son et al., 2015b).展开更多
The transforming growth factor(TGF)-βsignaling pathway controls many cellular processes,including proliferation,differentiation,and apoptosis.Abnormalities in the TGF-βsignaling pathway and its components are closel...The transforming growth factor(TGF)-βsignaling pathway controls many cellular processes,including proliferation,differentiation,and apoptosis.Abnormalities in the TGF-βsignaling pathway and its components are closely related to the occurrence of many human diseases,including cancer.Mothers against decapentaplegic homolog 4(Smad4),also known as deleted in pancreatic cancer locus 4,is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways.It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions.Smad4 also interacts with cytokines,miRNAs,and other signaling pathways,jointly regulating cell behavior.However,the regulatory function of Smad4 in tumorigenesis,stem cells,and drug resistance is currently controversial.In addition,Smad4 represents an attractive therapeutic target for cancer.Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment.Here,we review the identification and characterization of Smad4,the canonical TGF-β/Smad pathway,as well as the multiple roles of Smad4 in tumorigenesis,stem cells,and drug resistance.Furthermore,we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.展开更多
AIM: To investigate a novel therapeutic strategy to target and suppress c-myc in human cancers using far up stream element (FUSE)-binding protein-interacting repressor (FIR).
基金supported by the National Natural Science Foundation of China(NOs.22201178,and 32071414)the National Key Research and Development Program of China(No.2020YFA0907702).
文摘Proteolysis targeting chimeras (PROTACs) have recently emerged as promising therapeutic agents for cancer therapy. However, their clinical application is considerably hindered by the poor membrane permeability and insufficient tumor distribution of PROTACs. Here we proposed a nanoengineered targeting strategy to construct a self-assembled affibody-PROTAC conjugate nanomedicine (APCN) for tumor-specific delivery of PROTACs. As proof of concept, a hydrophobic PROTAC MZ1 (a bromodomain-containing protein 4 degrader) was selected to couple with a hydrophilic affibody ZHER2:342 (an affinity protein of human epidermal growth factor receptor 2, HER2) via a smart linker containing disulfide bond to form an amphiphilic ZHER2:342-MZ1 conjugate. It spontaneously self-assembled into nanoparticles (ZHER2:342-MZ1 APCN) in water. Upon the excellent targeting property of ZHER2:342 and HER2 receptor-mediated endocytosis, ZHER2:342-MZ1 APCN was accumulated in tumor sites and internalized by cancer cells effectively in vitro. Under the intracellular high level of glutathione (GSH), ZHER2:342-MZ1 APCN released MZ1 to specifically degrade bromodomain-containing protein 4 (BRD4) and subsequently induced BRD4 deficiency-mediated apoptosis of cancer cells. By the tail-vein injection, ZHER2:342-MZ1 APCN showed the outstanding tumor-specific targeting ability, drug accumulation capacity, enhanced BRD4 degradation and antitumor efficacy in vivo for an HER2-positive SKOV-3 tumor model. Such an affibody mediated nanoengineered strategy would facilitate the application of PROTACs for targeted cancer therapy.
文摘Transdermal drug delivery offers a promising alternative to traditional cancer therapies by providing a non-invasive,controlled,and targeted delivery of therapeutic agents.This paper explores the advancements,benefits,and challenges associated with transdermal drug delivery systems(TDDS)in cancer treatment.It highlights the mechanisms of action,key technologies,and the potential impact on patient outcomes.By examining recent studies and clinical trials,this paper aims to provide a comprehensive overview of the efficacy,safety,and prospects of transdermal drug delivery in oncology.
基金supported by the National Natural Science Foundation of China (51922111)the Science and Technology Development Fund, Macao SAR (File no. 0124/2019/A3)+1 种基金the University of Macao (File no. MYRG2022-00203-ICMS)Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials (2019B121205002)
文摘Nano drug delivery systems have made significant progress in delivering anticancer drugs camptothecin(CPT).However,many challenges for CPT delivery remain,including low drug loading efficiency,premature drug leakage,and poor cellular internalization.Herein,we report a novel dual-sensitive polypeptide-based micelle with remarkably high drug loading of CPT for cancer therapy.This self-assembled micelle possesses the following essential components for CPT:(1)pH-sensitive PEG(OHC-PEG-CHO)for prolonging blood circulation and allowing biocompatibility by shielding the cationic micelles,which can be detached under the tumor acidic microenvironment and facilitates the cellular uptake;(2)polypeptide polylysine-polyphenylalanine(PKF)synthesized via ring-opening polymerization for micelle formation and CPT analogue loading;(3)dimeric CPT(DCPT)with redox-sensitive linker for increasing CPT loading and ensuring drug release at tumor sites.Interestingly,the linear-like morphology of PEG-PKF/DCPT micelles was able to enhance their cellular internalization when compared with the spherical blank PKF micelles.Also,the anticancer efficacy of DCPT against lung cancer cells was significantly improved by the micelle formation.In conclusion,this work provides a promising strategy facilitating the safety and effective application of CPT in cancer therapy.
基金Supported by grant from United States National Institute of Health(NIH),No.P01 CA87969(to SE Hankinson),No.UM1 CA167552,and No.P01 CA55075(to WC Willett),No.R01 CA137178(to AT Chan),No.P50 CA127003(to CS Fuchs),No.R01 CA151993(to S Ogino)Bennett Family Fund for Targeted Therapies ResearchEntertainment Industry Foundation through National Colorectal Cancer Research Alliance
文摘Toll-like receptors (TLRs) are germ line encoded innate immune sensors that recognize conserved microbial structures and host alarmins, and signal expression of major histocompatibility complex proteins, costimulatory molecules, and inflammatory mediators by macrophages, neutrophils, dendritic cells, and other cell types. These protein receptors are characterized by their ability to respond to invading pathogens promptly by recognizing particular TLR ligands, including flagellin and lipopolysaccharide of bacteria, nucleic acids derived from viruses, and zymosan of fungi. There are 2 major TLR pathways; one is mediated by myeloid differentiation factor 88 (MYD88) adaptor proteins, and the other is independent of MYD88. The MYD88-dependent pathway involves early-phase activation of nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (NF-κB1) and all the TLRs, except TLR3, have been shown to activate this pathway. TLR3 and TLR4 act via MYD88-independent pathways with delayed activation of NF-κB signaling. TLRs play a vital role in activating immune responses. TLRs have been shown to mediate inflammatory responses and maintain epithelial barrier homeostasis, and are highly likely to be involved in the activation of a number of pathways following cancer therapy. Colorectal cancer (CRC) is one of the most common cancers, and accounts for almost half a million deaths annually worldwide. Inflammation is considered a risk factor for many common malignancies including cancers of the colorectum. The key molecules involved in inflammation-driven carcinogenesis include TLRs. As sensors of cell death and tissue remodeling, TLRs may have a universal role in cancer; stimulation of TLRs to activate the innate immune system has been a legitimate therapeutic strategy for some years. TLRs 3/4/7/8/9 are all validated targets for cancer therapy, and a number of companies are developing agonists and vaccine adjuvants. On the other hand, antagonists may favor inhibition of signaling responsible for autoimmune responses. In this paper, we review TLR signaling in CRC from carcinogenesis to cancer therapy.
文摘The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years.
文摘Since the discovery of the Nobel prize-winning mechanism of RNA interference(RNAi)ten years ago,it has become a promising drug target for the treatment of multiple diseases,including cancer.There have already been some successful applications of siRNA drugs in the treatment of age-related macular degeneration and respiratory syncytial virus infection.However,significant barriers still exist on the road to clinical applications of siRNA drugs,including poor cellular uptake,instability under physiological conditions,off-target effects and possible immunogenicity.The successful application of siRNA for cancer therapy requires the development of clinically suitable,safe and effective drug delivery systems.Herein,we review the design criteria for siRNA delivery systems and potential siRNA drug delivery systems for cancer therapy,including chemical modifications,lipidbased nanovectors,polymer-mediated delivery systems,conjugate delivery systems,and others.
基金Supported by National Natural Science Foundation of China,No.81773656Liaoning Revitalization Talents Program,No.XLYC1808017Shenyang Youth Science and Technology Innovation Talents Program,No.RC190454.
文摘The use of bacteria to specifically migrate to cancerous tissue and elicit an antitumor immune response provides a promising platform against cancer with significantly high potency.With dozens of clinical trials underway,some researchers hold the following views:“humans are nearing the first commercial live bacteria therapeutic.”However,the facultative anaerobe Salmonella typhimurium VNP20009,which is particularly safe and shows anticancer effects in preclinical studies,had failed in a phase I clinical trial due to low tumor regression and undesired dose-dependent side effects.This is almost certain to disappoint people’s inflated expectations,but it is noted that recent stateof-the-art research has turned attention to bacteria-mediated synergistic cancer therapy(BMSCT).In this review,the foundation of bacteria-mediated bio-therapy is outlined.Then,we summarize the potential benefits and challenges of bacterial bio-therapy in combination with different traditional anticancer therapeutic modalities(chemotherapy,photothermal therapy,reactive oxygen and nitrogen species therapy,immunotherapy,or prodrug-activating therapy)in the past 5 years.Next,we discuss multiple administration routes of BMSCT,highlighting potentiated antitumor responses and avoidance of potential side effects.Finally,we envision the opportunities and challenges for BMSCT development,with the purpose of inspiring medicinal scientists to widely utilize the microbiome approach in patient populations.
文摘Natural products,with remarkable chemical diversity,have been extensively investigated for their anticancer potential for more than a half-century.The collective efforts of the community have achieved the tremendous advancements,bringing natural products to clinical use and discovering new therapeutic opportunities,yet the challenges remain ahead.With remarkable changes in the landscape of cancer therapy and growing role of cutting-edge technologies,we may have come to a crossroads to revisit the strategies to understand nature products and to explore their therapeutic utility.This review summarizes the key advancements in nature product-centered cancer research and calls for the implementation of systematic approaches,new pharmacological models,and exploration of emerging directions to revitalize natural products search in cancer therapy.
基金supported by the Natural Science Foundation of China (Grant Nos. 52022090, 22005265, 82070739, 81870641)National Key R&D Program of China (Grant No. 2018YFC1106104)+3 种基金Key Research and Development Program of Zhejiang Province (Grant No. 2020C03035)Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ20E030011)Zhejiang Medical Health Science and Technology Program (Grant No. 2021RC061)Zhejiang Provincial Ten Thousand Talents Program (2018R52001)。
文摘Gemcitabine has been extensively applied in treating various solid tumors. Nonetheless,the clinical performance of gemcitabine is severely restricted by its unsatisfactory pharmacokinetic parameters and easy deactivation mainly because of its rapid deamination, deficiencies in deoxycytidine kinase (DCK), and alterations in nucleoside transporter. On this account, repeated injections with a high concentration of gemcitabine are adopted, leading to severe systemic toxicity to healthy cells. Accordingly, it is highly crucial to fabricate efficient gemcitabine delivery systems to obtain improved therapeutic efficacy of gemcitabine. A large number of gemcitabine pro-drugs were synthesized by chemical modification of gemcitabine to improve its biostability and bioavailability. Besides,gemcitabine-loaded nano-drugs were prepared to improve the delivery efficiency. In this review article, we introduced different strategies for improving the therapeutic performance of gemcitabine by the fabrication of pro-drugs and nano-drugs. We hope this review will provide new insight into the rational design of gemcitabine-based delivery strategies for enhanced cancer therapy.
文摘Recently, a wide range of food-derived phytochemical compounds and their synthetic derivatives have been proposed for cancer treatment. Unfortunately, data available in related literature focus on the anti-cancer properties of compounds derived from edible plants, while very little is known about those derived from non-edible plants. And thus, the underlying mechanisms of their anti-cancer effects are yet to be elucidated. This review collates the available data on the anti-cancer activities of six phytochemical-derived compounds from edible and non-edible plants, i.e.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51125001,51172005,and 90922033)the Research Fellowship for International Young Scientists of the National Natural Science Foundation of China (Grant No. 51250110078)+1 种基金the Doctoral Program of the Education Ministry of China (Grant No. 20120001110078)PKU COE-Health Science Center Seed Fund
文摘Nanoparticles(NPs) with easily modified surfaces have been playing an important role in biomedicine.As cancer is one of the major causes of death,tremendous efforts have been devoted to advance the methods of cancer diagnosis and therapy.Recently,magnetic nanoparticles(MNPs) that are responsive to a magnetic field have shown great promise in cancer therapy.Compared with traditional cancer therapy,magnetic field triggered therapeutic approaches can treat cancer in an unconventional but more effective and safer way.In this review,we will discuss the recent progress in cancer therapies based on MNPs,mainly including magnetic hyperthermia,magnetic specific targeting,magnetically controlled drug delivery,magnetofection,and magnetic switches for controlling cell fate.Some recently developed strategies such as magnetic resonance imaging(MRI) monitoring cancer therapy and magnetic tissue engineering are also addressed.
文摘Tumors consist of a mixture of heterogeneous cell types. Cancer stem cells(CSCs) are a minor sub-population within the bulk cancer fraction which has been foundto reconstitute and propagate the disease and to be frequently resistant to chemotherapy, irradiation, cytotoxic drugs and probably also against immune attack. CSCs are considered as the seeds of tumor recurrence, driving force of tumorigenesis and metastases. This underlines the urgent need for innovative methods to identify and target CSCs. However, the role and existence of CSCs in therapy resistance and cancer recurrence remains a topic of intense debate. The underlying biological properties of the tumor stem cells are extremely dependent on numerous signals, and the targeted inhibition of these stem cell signaling pathways is one of the promising approaches of the new antitumor therapy approaches. This perspective review article summarizes the novel methods of tracing CSCs and discusses the hallmarks of CSC identification influenced by the microenvironment or by having imperfect detection markers. In addition, explains the known molecular mechanisms of therapy resistance in CSCs as reliable and clinically predictive markers that could enable the use of new targeted antitumor therapy in the sense of personalized medicine.
文摘Rising worldwide cancer incidence and resistance to current anti-cancer drugs necessitate the need for new pharmaceutical compounds and drug delivery system. Malfunction of the immune system, particularly in the tumor microenvironment, causes tumor growth and enhances tumor progression. Thus, cancer immunotherapy can be an appropriate approach to provoke the systemic immune system to combat tumor expansion. Texosomesj which are endogenous nanovesicles released by all tumor cells, contribute to cell-cell communication and modify the phenotypic features of recipient cells due to the texosomes' ability to transport biological components. For this reason, texosome-based delivery system can be a valuable strategy for therapeutic purposes. To improve the pharmaceutical behavior of this system and to facilitate its use in medical applications, biotechnology approaches and mimetic techniques have been utilized. In this review, we present the development history oftexosome-based delivery systems and discuss the advantages and disadvantages of each system.
基金supported by NIH grant R01 GM084020the Japan National Institute of Radiological Sciences International Open Laboratory Program
文摘Successful cancer therapy depends on selective killing of tumor cells while sparing normal cells. Selectivity can be achieved through treatment strategies that target tumor cells. A recent report from the Li laboratory (1) describes an elegant strategy to selectively kill tumor cells by combining several targeting strategies based on cell biological, physical, and molecular (genetic) properties of tumor and normal cells that enhances tumor cell killing in vitro and in an in vivo tumor xenograft model. The idea of using a multiplex targeting approach is reminiscent of strategies in which several antibiotics are used to treat bacterial infections while minimizing the chance that rare antibiotic-resistant mutants will arise within a population.
基金This work was supported by National Natural Science Foundation of China(nos.81872816,81773656,U1608283)Liaoning Revitalization Talents Program,No XLYC1808017.
文摘The therapeutic strategy that gives consideration to the combination of photodynamic therapy and chemotherapy,has emerged as a potential development of effective anti-cancer medicine.Nevertheless,co-delivery of photosensitizers(PSs)and chemotherapeutic drugs in traditional carriers still remains great limitations due to low drug loadings and poor biocompatibility.Herein,we have utilized a computer-aided strategy to achieve a desired carrier-free self-delivery of pyropheophorbide a(PPa,a common PS)and podophyllotoxin(PPT,a classical chemotherapeutic drug)for synergistic cancer therapy.First,the computational simulation method identified the similar molecular sizes and rigid molecular structures between two drugs molecules.Based on the molecular docking,the intermolecular interactions were found to includeπ-πstackings,hydrophobic interactions and hydrogen bonds.Next,both drugs could co-assemble into nanoparticles(NPs)via one-step nanoprecipitation method.The various spectral experiments(UV,IR and FL)were conducted to evaluate the formation mechanism of spherical NPs.Moreover,in vitro and in vivo experiments systematically demonstrated that PPT/PPa NPs not only showed better cellular uptake efficiency,stronger cytotoxicity and higher accumulation in tumor sites,but also exhibited synergistic antitumor effect in female BALB/C bearing-4T1 tumor mice.Such a computer-aided design strategy of chem-photodynamic drugs self-delivery systems pave the way for efficient synergistic cancer therapy.
文摘Precision medicine aims to identify the right drug, for the right patient, at the right dose, at the right time, which is particularly important in cancer therapy. Problems such as the variability of treatment response and resistance to medication have been longstanding challenges in oncology, especially for development of new medications. Solid tumors, unlike hematologic malignancies or brain tumors, are remarkably diverse in their cellular origins and developmental timing. The ability of next-generation sequencing(NGS) to analyze the comprehensive landscape of genetic alterations brings promises to diseases that have a highly complex and heterogeneous genetic composition such as cancer. Here we provide an overview of how NGS is able to facilitate precision medicine and change the paradigm of cancer therapy, especially for solid tumors, through technical advancements, molecular diagnosis, response monitoring and clinical trials.
文摘Cancer treatments such as chemotherapy and radiotherapy are widely used to treat primary and metastatic cancers.Epidemiological studies have demonstrated that these types of treatment can effectively and successfully extend the lifespan of cancer patients,but they are also associated with various neurological complications such as cognitive deficits, seizures, and emotional problems (Taphoorn and Klein, 2004; Yang and Moon, 2013; Son et al., 2015b).
基金the National Natural Science Foundation of China,No.8180306the Natural Science Foundation of Zhejiang Province,No.LY18C070002the 521 Talent Project of Zhejiang Sci-Tech University,No.2021437620 and No.2019337459.
文摘The transforming growth factor(TGF)-βsignaling pathway controls many cellular processes,including proliferation,differentiation,and apoptosis.Abnormalities in the TGF-βsignaling pathway and its components are closely related to the occurrence of many human diseases,including cancer.Mothers against decapentaplegic homolog 4(Smad4),also known as deleted in pancreatic cancer locus 4,is a typical tumor suppressor candidate gene locating at q21.1 of human chromosome 18 and the common mediator of the TGF-β/Smad and bone morphogenetic protein/Smad signaling pathways.It is believed that Smad4 inactivation correlates with the development of tumors and stem cell fate decisions.Smad4 also interacts with cytokines,miRNAs,and other signaling pathways,jointly regulating cell behavior.However,the regulatory function of Smad4 in tumorigenesis,stem cells,and drug resistance is currently controversial.In addition,Smad4 represents an attractive therapeutic target for cancer.Elucidating the specific role of Smad4 is important for understanding the mechanism of tumorigenesis and cancer treatment.Here,we review the identification and characterization of Smad4,the canonical TGF-β/Smad pathway,as well as the multiple roles of Smad4 in tumorigenesis,stem cells,and drug resistance.Furthermore,we provide novel insights into the prospects of Smad4-targeted cancer therapy and the challenges that it will face in the future.
基金Supported by In part by the 21st Century COE(Center Of Ex-cellence)Programs to Dr.Takenori Ochiaiby a Grant-in-Aid 18591453 to K.M from the Ministry of Education,Science,Sports and Culture of Japan
文摘AIM: To investigate a novel therapeutic strategy to target and suppress c-myc in human cancers using far up stream element (FUSE)-binding protein-interacting repressor (FIR).