Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically st...Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically stable yellow-green leaf mutant ygl16 was identified from mutated“Xinong 1B”.Compared with the wild type,the pigment concentration and photosynthetic capacity of the ygl16 decreased significantly.The ultrastructural observation showed that the distribution of thylakoid lamellae was irregular in ygl16 chloroplasts,and the grana and matrix lamellae were blurred and loose in varied degrees,and the chloroplast structure was disordered,while the osmiophilic corpuscles increased.The results of the genetic analysis and mapping showed that the phenotype of ygl16 was controlled by a pair of recessive nuclear gene.The gene located in the 56Kb interval between RM25654 and R3 on the long arm of chromosome 10.The sequencing results showed that the 121st base of the first intron of the candidate gene OsPORB/FGL changed from A to T in the interval.qRT-PCR results showed that the expression of chlorophyll synthase-related genes in the mutant decreased.展开更多
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we ...Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.展开更多
Parkinson's disease (PD) is a typical degenerative disease, which is characterized by the most obvious symptoms of movement dysfunction, including shaking, rigidity, slowness of movement and difficulty in walking a...Parkinson's disease (PD) is a typical degenerative disease, which is characterized by the most obvious symptoms of movement dysfunction, including shaking, rigidity, slowness of movement and difficulty in walking and gait. This disease can not be clearly identified through laboratory tests at present, thus application of high-throughput technique in studying the expression profiles of PD helps to find the genetic markers for its early diagnosis. Studies on expression profiles of neurodegenerative diseases have revealed the novel genes and pathways involved in the progress of illness. In this study, the expression profiles of PD in blood were compared, showing that 181 differentially expressed genes (DEG) exhibit a similar expression trend both in patients and in normal controls.展开更多
The composition and quantity of amino acids influence the protein content and nutritional value of soybeans and also have an important impact upon soybean quality. After integrating and proofreading 140 original QTLs ...The composition and quantity of amino acids influence the protein content and nutritional value of soybeans and also have an important impact upon soybean quality. After integrating and proofreading 140 original QTLs associated with amino acid contentfrom soybase(http://www.soybase.org/), 138 QTLs were further analyzed to determine high-confidence QTL regions. Meta-analysis was first carried out using the Bio Mercator ver. 2.1 software, yielding 33 consensus QTLs. The consensus QTL confidence intervals(CIs) ranged from 0.07 to 19.85 Mb. Next, the overview method was used to optimize the CIs, and 57 "real" QTLs were mapped. Candidate genes in the consensus QTL regions were obtained from Phytozome and were annotated using the Gene Ontology(GO), Kyoto Encyclopedia of Genes and Genomes(KEGG), Swissprot, and gene annotation databases. Finally, 16 unpublished candidate genes controlling the content of five types of amino acids were identified with Blast. These results laid the foundation for fine mapping of soybean amino acid-related QTLs and marker-assisted selection.展开更多
Chronic pancreatitis is known to be a heterogeneous disease with varied etiologies.Tropical calcific pancreatitis(TCP) is a severe form of chronic pancreatitis unique to developing countries.With growing evidence of g...Chronic pancreatitis is known to be a heterogeneous disease with varied etiologies.Tropical calcific pancreatitis(TCP) is a severe form of chronic pancreatitis unique to developing countries.With growing evidence of genetic factors contributing to the pathogenesis of TCP,this review is aimed at compiling the available information in this field.We also propose a two hit model to explain the sequence of events in the pathogenesis of TCP.展开更多
基金supported by grants from the Project of Creating High Quality,Disease Resistance and High Combining Ability CMS Lines(Grant No.cstc2018jscx-msybX0250)Chongqing Technology Innovation and Application Demonstration Project and the Project of High Photosynthetic Efficiency Rice Breeding Technology System(Grant No.2017YFD0100201)the National Key Research and Development Program“Seven Crops Breeding”.
文摘Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically stable yellow-green leaf mutant ygl16 was identified from mutated“Xinong 1B”.Compared with the wild type,the pigment concentration and photosynthetic capacity of the ygl16 decreased significantly.The ultrastructural observation showed that the distribution of thylakoid lamellae was irregular in ygl16 chloroplasts,and the grana and matrix lamellae were blurred and loose in varied degrees,and the chloroplast structure was disordered,while the osmiophilic corpuscles increased.The results of the genetic analysis and mapping showed that the phenotype of ygl16 was controlled by a pair of recessive nuclear gene.The gene located in the 56Kb interval between RM25654 and R3 on the long arm of chromosome 10.The sequencing results showed that the 121st base of the first intron of the candidate gene OsPORB/FGL changed from A to T in the interval.qRT-PCR results showed that the expression of chlorophyll synthase-related genes in the mutant decreased.
基金supported by grants from the Major Program of National Agricultural Science and Technology of China(NK20220607)the National Natural Science Foundation of China(32272059 and 31971883)the Science and Technology Department of Sichuan Province(2021YFYZ0002,2022ZDZX0014,and 2023NSFSC1995)。
文摘Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.
基金supported by the National Natural Science Foundation of China(81101302,31270185)SKLID Development Grant(2014,SKLID201)
文摘Parkinson's disease (PD) is a typical degenerative disease, which is characterized by the most obvious symptoms of movement dysfunction, including shaking, rigidity, slowness of movement and difficulty in walking and gait. This disease can not be clearly identified through laboratory tests at present, thus application of high-throughput technique in studying the expression profiles of PD helps to find the genetic markers for its early diagnosis. Studies on expression profiles of neurodegenerative diseases have revealed the novel genes and pathways involved in the progress of illness. In this study, the expression profiles of PD in blood were compared, showing that 181 differentially expressed genes (DEG) exhibit a similar expression trend both in patients and in normal controls.
基金financially supported by the National Key R&D Program of China (2016YFD0100500, 2016YFD0100300, 2016YFD0100201-21)the "Challenge Cup" National College Student Curricular Academic Science and Technology Works Competition of Ministry of Education of China (to Gong Qianchun, guided by Qi Zhaoming)+5 种基金the National Natural Science Foundation of China (31701449, 31471516, 31401465, 31400074, 31501332)the China Post Doctoral Project (2015M581419)the Dongnongxuezhe Project (to Chen Qingshan), Chinathe Young Talent Project (to Qi Zhaoming) of Northeast Agriculture University, China (518062)the Heilongjiang Funds for Distinguished Young Scientists, China (JC2016004)the Outstanding Academic Leaders Projects of Harbin, China (2015RQXXJ018)
文摘The composition and quantity of amino acids influence the protein content and nutritional value of soybeans and also have an important impact upon soybean quality. After integrating and proofreading 140 original QTLs associated with amino acid contentfrom soybase(http://www.soybase.org/), 138 QTLs were further analyzed to determine high-confidence QTL regions. Meta-analysis was first carried out using the Bio Mercator ver. 2.1 software, yielding 33 consensus QTLs. The consensus QTL confidence intervals(CIs) ranged from 0.07 to 19.85 Mb. Next, the overview method was used to optimize the CIs, and 57 "real" QTLs were mapped. Candidate genes in the consensus QTL regions were obtained from Phytozome and were annotated using the Gene Ontology(GO), Kyoto Encyclopedia of Genes and Genomes(KEGG), Swissprot, and gene annotation databases. Finally, 16 unpublished candidate genes controlling the content of five types of amino acids were identified with Blast. These results laid the foundation for fine mapping of soybean amino acid-related QTLs and marker-assisted selection.
文摘Chronic pancreatitis is known to be a heterogeneous disease with varied etiologies.Tropical calcific pancreatitis(TCP) is a severe form of chronic pancreatitis unique to developing countries.With growing evidence of genetic factors contributing to the pathogenesis of TCP,this review is aimed at compiling the available information in this field.We also propose a two hit model to explain the sequence of events in the pathogenesis of TCP.