In this paper,the GH-congruence canonical forms of positive semidefinite and definte inite and definite(need not be self-conjugate)quaternion matrices are given,and a neccessary and sufficientcondition of GH-congruenc...In this paper,the GH-congruence canonical forms of positive semidefinite and definte inite and definite(need not be self-conjugate)quaternion matrices are given,and a neccessary and sufficientcondition of GH-congruence for two positive semidifinite(definite)quaternion matrices isgiven also.Then simultaneous GH-congruence reduced forms for two self-conjugate matri-ces and some result about the simultaneous GH-congruence diagonalization of quaternionmatrices are obtained.展开更多
In this article, Haseman boundary value problem for a class of meta-analytic functions is studied. The expression of solution and the condition of solvability for Haseman boundary value problem are obtained by changin...In this article, Haseman boundary value problem for a class of meta-analytic functions is studied. The expression of solution and the condition of solvability for Haseman boundary value problem are obtained by changing the problem discussed into the equivalent Haseman boundary value problem of bi-analytic function. And the expression of solution and the condition of solvability depend on the canonical matrix.展开更多
We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix...We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix triplet. As applications, we present necessary and suficient conditions for the existence of the generalsolutions to the system of matrix equations DXA = C1, EXB = C2, F XC = C3 and the matrix equation AXD + BY E + CZF = Gover F. We give the expressions of the general solutions to the system and the matrix equation when thesolvability conditions are satisfied. Moreover, we present numerical examples to illustrate the results of thispaper. We also mention the other applications of the equivalence canonical form, for instance, for the compressionof color images.展开更多
In this paper, the theoretical analysis for the Rayleigh quotient matrix is studied, some results of the Rayleigh quotient (matrix) of Hermitian matrices are extended to those for arbitrary matrix on one hand. On th...In this paper, the theoretical analysis for the Rayleigh quotient matrix is studied, some results of the Rayleigh quotient (matrix) of Hermitian matrices are extended to those for arbitrary matrix on one hand. On the other hand, some unitarily invariant norm bounds for singular values are presented for Rayleigh quotient matrices. Our results improve the existing bounds.展开更多
文摘In this paper,the GH-congruence canonical forms of positive semidefinite and definte inite and definite(need not be self-conjugate)quaternion matrices are given,and a neccessary and sufficientcondition of GH-congruence for two positive semidifinite(definite)quaternion matrices isgiven also.Then simultaneous GH-congruence reduced forms for two self-conjugate matri-ces and some result about the simultaneous GH-congruence diagonalization of quaternionmatrices are obtained.
基金supported by Tianyuan Fund of Mathematics (10626039)NNSF of China (10871150)RFDP of Higher Eduction of China (20060486001)
文摘In this article, Haseman boundary value problem for a class of meta-analytic functions is studied. The expression of solution and the condition of solvability for Haseman boundary value problem are obtained by changing the problem discussed into the equivalent Haseman boundary value problem of bi-analytic function. And the expression of solution and the condition of solvability depend on the canonical matrix.
基金supported by National Natural Science Foundation of China (GrantNo. 60672160)the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20093108110001)+3 种基金the Scientific Research Innovation Foundation of Shanghai Municipal Education Commission (Grant No. 09YZ13)the Netherlands Organization for Scientific Research (NWO)Singapore MoE Tier 1 Research Grant RG60/07Shanghai Leading Academic Discipline Project (Grant No. J50101)
文摘We in this paper give a decomposition concerning the general matrix triplet over an arbitrary divisionring F with the same row or column numbers. We also design a practical algorithm for the decomposition of thematrix triplet. As applications, we present necessary and suficient conditions for the existence of the generalsolutions to the system of matrix equations DXA = C1, EXB = C2, F XC = C3 and the matrix equation AXD + BY E + CZF = Gover F. We give the expressions of the general solutions to the system and the matrix equation when thesolvability conditions are satisfied. Moreover, we present numerical examples to illustrate the results of thispaper. We also mention the other applications of the equivalence canonical form, for instance, for the compressionof color images.
文摘In this paper, the theoretical analysis for the Rayleigh quotient matrix is studied, some results of the Rayleigh quotient (matrix) of Hermitian matrices are extended to those for arbitrary matrix on one hand. On the other hand, some unitarily invariant norm bounds for singular values are presented for Rayleigh quotient matrices. Our results improve the existing bounds.