For a symmetrizable Kac-Moody Lie algebra g, Lusztig introduced the corresponding modified quantized enveloping algebra˙U and its canonical basis˙B given by Lusztig in 1992. In this paper, in the case that g is a sy...For a symmetrizable Kac-Moody Lie algebra g, Lusztig introduced the corresponding modified quantized enveloping algebra˙U and its canonical basis˙B given by Lusztig in 1992. In this paper, in the case that g is a symmetric Kac-Moody Lie algebra of finite or affine type, the authors define a set M which depends only on the root category R and prove that there is a bijection between M and ˙B, where R is the T^2-orbit category of the bounded derived category of the corresponding Dynkin or tame quiver. The method in this paper is based on a result of Lin, Xiao and Zhang in 2011, which gives a PBW-type basis of U^+.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(No.BLX2013014)the National Natural Science Foundation of China(No.11131001)
文摘For a symmetrizable Kac-Moody Lie algebra g, Lusztig introduced the corresponding modified quantized enveloping algebra˙U and its canonical basis˙B given by Lusztig in 1992. In this paper, in the case that g is a symmetric Kac-Moody Lie algebra of finite or affine type, the authors define a set M which depends only on the root category R and prove that there is a bijection between M and ˙B, where R is the T^2-orbit category of the bounded derived category of the corresponding Dynkin or tame quiver. The method in this paper is based on a result of Lin, Xiao and Zhang in 2011, which gives a PBW-type basis of U^+.