In order to efficiently solve the shading problem between the upper layer and lower layer in the same cultivation system and between adjacent cultivation systems in multi-layer stereo-cultivation of strawberry,and to ...In order to efficiently solve the shading problem between the upper layer and lower layer in the same cultivation system and between adjacent cultivation systems in multi-layer stereo-cultivation of strawberry,and to improve the fixed A-frame system,a novel cultivation system-sun-tracking system was developed that could keep north-south line of cultivation frame parallel to sunray to make the best use of direct light.In this study,crop canopy light condition of sun-tracking and fixed systems were tested and compared.Results showed that integrated PPF of sun-tracking system is higher than that of fixed system in both middle and lower layers.On sunny day compared with fixed system,integrated PPF on middle and lower layer of suntracking system increased by 16.0%,9.1% in January and 19.6%,4.1% in February,while on cloudy day improvement on light condition of sun-tracking system is not evident as sunny days.Thus sun-tracking system can effectively alleviate shading problem between layers and improve plant canopy light environment.展开更多
The canopy light extinction coefficient (K) is a key factor in affecting ecosystem carbon, water, and energy processes. However, K is assumed as a constant in most biogeochemical models owing to lack of in-site meas...The canopy light extinction coefficient (K) is a key factor in affecting ecosystem carbon, water, and energy processes. However, K is assumed as a constant in most biogeochemical models owing to lack of in-site measurements at diverse terrestrial ecosystems. In this study, by compiling data of K measured at 88 terrestrial ecosystems, we investigated the spatiotemporal variations of this index across main ecosystem types, including grassland, cropland, shrubland, broadleaf forest, and needleleaf forest. Our results indicated that the average K of all biome types during whole growing season was 0.56. However, this value in the peak growing season was 0.49, indicating a certain degree of seasonal variation. In addition, large variations in K exist within and among the plant functional types. Cropland had the highest value of K (0.62), followed by broadleaf forest (0.59), shrubland (0.56), grassland (0.50), and needleleaf forest (0.45). No significant spatial correlation was found between K and the major environmental factors, i.e., mean annual precipitation, mean annual temperature, and leaf area index (LAI). Intra-annually, significant negative correlations between K and seasonal changes in LAI were found in the natural {K=2/π[cosαcosθsina^-1(tanθtanα)+(1+cos^2a-cos^2θ^1/2)],a+θ〉π/2 K=cosαcosθ,α+θ≤π/2 k K is usually calculated with the Beer Lambert Law (Monsi and Sakei, 1953):K = - In (Ii/Io) cosθ/(LAIΩ),(2)ecosystems. In cropland, however, the temporal relation- ship was site-specific. The ecosystem type specific values of K and its temporal relationship with LAI observed in this study may contribute to improved modeling of global biogeochemical cycles.展开更多
Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechan...Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.展开更多
Crop growth and yield depend on canopy light interception (LI). To identify a low-cost and relatively efficient index for measuring LI, several color attributes of red-green-blue (RGB), hue-saturation-intensity (...Crop growth and yield depend on canopy light interception (LI). To identify a low-cost and relatively efficient index for measuring LI, several color attributes of red-green-blue (RGB), hue-saturation-intensity (HSI), hue-saturation-value (HSV) color models and the component values of color attributes in the RGB color model were investigated using digital images at six cotton plant population densities in 2012-2014. The results showed that the LI values followed downward quadratic curves after planting. The red (R), green (G) and blue (B) values varied greatly over the years, in accordance with Cai's research demonstrating that the RGB model is affected by outside light. Quadratic curves were fit to these color attributes at six plant population densities. Additionally, linear regressions of LI on every color attribute revealed that the hue (H) values in HSI and HSV were significantly linearly correlated with LI with a determination coefficient (R2)〉0.89 and a root mean square error (RMSE)=0.05. Thus, the H values in the HSI and HSV models could be used to measure LI, and this hypothesis was validated. The H values are new indexes for quantitatively estimating the LI of heterogeneous crop cano- pies, which will provide a theoretical basis for optimizing the crop canopy structure. However, further research should be conducted in other crops and under other growing and environmental conditions to verify this finding.展开更多
New indica and japonica hybrid rice cultivars,such as the Yongyou series,provide farmers with very high yield potential.However,information on their canopy light capture and solar radiation use efficiency in the late ...New indica and japonica hybrid rice cultivars,such as the Yongyou series,provide farmers with very high yield potential.However,information on their canopy light capture and solar radiation use efficiency in the late season is limited.Field experiments were performed to compare the radiation-use parameters of four rice types:indica rice(IR),inbred japonica rice(IJR),hybrid japonica rice(HJR),and hybrid indica/japonica rice(HIJR),from 2016 to 2018 during the late season in Hangzhou,China.The grain yield,aboveground biomass,intercepted solar radiation(SI),and radiation-use efficiency(RUE)of the HIJR were on average respectively 13.4%–53.4%,14.3%–30.6%,7.6%–21.4%,and 8.2%–14.9%higher than those of the HJR,IJR,and IR.The leaf area index(LAI)of the HIJR was 18.2%–57.0%greater than that of the IJR and HJR at four growth stages,resulting in respectively 17.8%–38.5%and 10.7%–42.8%greater canopy light interception rates(LIR)and amount of intercepted solar radiation during the vegetative stage.The prolonged grain-filling stage also led to respectively 33.9%–52.6%and 30.5%–51.4%increases in amounts of incident and intercepted radiation for the HIJR relative to the IR during grain filling.These results indicate that the SI superiority of the HIJR was caused by canopy closure as rapid as that of the IR during the vegetative stage(greater LAI and canopy LIR during the growing season)and a grain-filling stage as long as that of the HJR.For grain-filling stage,differences in leaf Pn between HIJR,IR,and IJR were not significant,suggesting that the greater RUE of the HIJR(12.7%–52.8%higher)than that of the other rice types resulted from improved canopy architecture after flowering(FL).Principal components analysis(PCA)revealed that the superiority of the HIJR in terms of solar radiation use resulted from the greater canopy light capture capability of IR and the prolonged growth period(especially during grain filling)of japonica rice in the late growing season.展开更多
A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irri...A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irrigation (W0), irrigation once at jointing (W1j) or at booting (W1b), irrigation twice at jointing and booting (W2), and irrigation three times at jointing, booting and grain-filling (W3) and three planting densities, such as 180 (D1), 300 (D2) and 450 (D3) seedlings per square meter. The results indicated that irrigation significantly improved population photosynthesis. The relationship between population photosynthesis and irrigation time/volume was to some extent parabolic. Improvements in population photosynthesis (resulting from more irrigation time/volume) were mainly related to increase in leaf area index and population light interception. Population photosynthesis exhibited a significantly negative correlation with canopy light transmittance. Population photosynthesis at grain filling stage was significantly positively correlated with dry matter accumulation at post-anthesis and grain yield. Main effects and partial correlation analysis showed that population photosynthesis of W0, W1j, W1b and W3 were regulated by canopy light transmittance and leaf area. On the other hand, population photosynthesis of W2 was mainly influenced by flag leaf photosynthetic rate. On this basis, planting 300 seedlings per square meter was the optimum combination. The combination of W2D2 increased population photosynthesis during mid-late growth stages and extended high population photosynthesis duration, which ultimately increased grain yield.展开更多
Photosynthesis is related to dry matter accumulation in aboveground part of rice plant,which is the direct factor of production.This study carried out research on physiological indicators and the relationship between ...Photosynthesis is related to dry matter accumulation in aboveground part of rice plant,which is the direct factor of production.This study carried out research on physiological indicators and the relationship between photosynthesis and dry matter accumulation under different water management in paddy field.In general,the photosynthetic and physiological indicators showed the trend of increasing and then decreasing with the growth stage of rice.Experimental results showed that,chlorophyll content and leaf area index of rice leaves showed a quadratic curve positive correlation.Canopy light transmission reached the maximum at heading-flowering stage,and it had quadratic relationship with leaf area index,while it showed extremely positive correlation under rain-water storage irrigation mode.Photosynthetic rate(Pn)and transpiration rate(Tr)had quadratic curve positive correlation with chlorophyll content.The water condition under rain-water storage was favorable for dry matter accumulation in panicle.After multiple regression and main factor analysis,canopy light transmission,light transmission coefficient and Pn were main factors related to dry matter accumulation.The conclusions in this article were helpful for promoting rice yield in practice.展开更多
基金Supported by National Science and Technology Plan Project"Five"in Rural Areas--Plant Factory Perspective Multilayer Cultivation System and Its Key Technology and Equipment Research(2013AA103002)Modern Agricultural Industry Technology System Construction Special(CARS-25-06B)
文摘In order to efficiently solve the shading problem between the upper layer and lower layer in the same cultivation system and between adjacent cultivation systems in multi-layer stereo-cultivation of strawberry,and to improve the fixed A-frame system,a novel cultivation system-sun-tracking system was developed that could keep north-south line of cultivation frame parallel to sunray to make the best use of direct light.In this study,crop canopy light condition of sun-tracking and fixed systems were tested and compared.Results showed that integrated PPF of sun-tracking system is higher than that of fixed system in both middle and lower layers.On sunny day compared with fixed system,integrated PPF on middle and lower layer of suntracking system increased by 16.0%,9.1% in January and 19.6%,4.1% in February,while on cloudy day improvement on light condition of sun-tracking system is not evident as sunny days.Thus sun-tracking system can effectively alleviate shading problem between layers and improve plant canopy light environment.
文摘The canopy light extinction coefficient (K) is a key factor in affecting ecosystem carbon, water, and energy processes. However, K is assumed as a constant in most biogeochemical models owing to lack of in-site measurements at diverse terrestrial ecosystems. In this study, by compiling data of K measured at 88 terrestrial ecosystems, we investigated the spatiotemporal variations of this index across main ecosystem types, including grassland, cropland, shrubland, broadleaf forest, and needleleaf forest. Our results indicated that the average K of all biome types during whole growing season was 0.56. However, this value in the peak growing season was 0.49, indicating a certain degree of seasonal variation. In addition, large variations in K exist within and among the plant functional types. Cropland had the highest value of K (0.62), followed by broadleaf forest (0.59), shrubland (0.56), grassland (0.50), and needleleaf forest (0.45). No significant spatial correlation was found between K and the major environmental factors, i.e., mean annual precipitation, mean annual temperature, and leaf area index (LAI). Intra-annually, significant negative correlations between K and seasonal changes in LAI were found in the natural {K=2/π[cosαcosθsina^-1(tanθtanα)+(1+cos^2a-cos^2θ^1/2)],a+θ〉π/2 K=cosαcosθ,α+θ≤π/2 k K is usually calculated with the Beer Lambert Law (Monsi and Sakei, 1953):K = - In (Ii/Io) cosθ/(LAIΩ),(2)ecosystems. In cropland, however, the temporal relation- ship was site-specific. The ecosystem type specific values of K and its temporal relationship with LAI observed in this study may contribute to improved modeling of global biogeochemical cycles.
基金the National Natural Science Foundation of China(32071955)the Natural Science Foundation of Shaanxi Province,China(2018JQ3061).
文摘Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.
基金supported by the National Natural Science Foundation (31371561)
文摘Crop growth and yield depend on canopy light interception (LI). To identify a low-cost and relatively efficient index for measuring LI, several color attributes of red-green-blue (RGB), hue-saturation-intensity (HSI), hue-saturation-value (HSV) color models and the component values of color attributes in the RGB color model were investigated using digital images at six cotton plant population densities in 2012-2014. The results showed that the LI values followed downward quadratic curves after planting. The red (R), green (G) and blue (B) values varied greatly over the years, in accordance with Cai's research demonstrating that the RGB model is affected by outside light. Quadratic curves were fit to these color attributes at six plant population densities. Additionally, linear regressions of LI on every color attribute revealed that the hue (H) values in HSI and HSV were significantly linearly correlated with LI with a determination coefficient (R2)〉0.89 and a root mean square error (RMSE)=0.05. Thus, the H values in the HSI and HSV models could be used to measure LI, and this hypothesis was validated. The H values are new indexes for quantitatively estimating the LI of heterogeneous crop cano- pies, which will provide a theoretical basis for optimizing the crop canopy structure. However, further research should be conducted in other crops and under other growing and environmental conditions to verify this finding.
基金This research was supported in part by grants from the National Key Research and Development Program of China(2016YFD0300108,2016YFD0300208-02)the National Natural Science Foundation of China(31671638)+1 种基金the China Agriculture Research System(CARS-01-04A)Central Public Interest Scientific Institution Basal Research Fund(2017RG004-1).
文摘New indica and japonica hybrid rice cultivars,such as the Yongyou series,provide farmers with very high yield potential.However,information on their canopy light capture and solar radiation use efficiency in the late season is limited.Field experiments were performed to compare the radiation-use parameters of four rice types:indica rice(IR),inbred japonica rice(IJR),hybrid japonica rice(HJR),and hybrid indica/japonica rice(HIJR),from 2016 to 2018 during the late season in Hangzhou,China.The grain yield,aboveground biomass,intercepted solar radiation(SI),and radiation-use efficiency(RUE)of the HIJR were on average respectively 13.4%–53.4%,14.3%–30.6%,7.6%–21.4%,and 8.2%–14.9%higher than those of the HJR,IJR,and IR.The leaf area index(LAI)of the HIJR was 18.2%–57.0%greater than that of the IJR and HJR at four growth stages,resulting in respectively 17.8%–38.5%and 10.7%–42.8%greater canopy light interception rates(LIR)and amount of intercepted solar radiation during the vegetative stage.The prolonged grain-filling stage also led to respectively 33.9%–52.6%and 30.5%–51.4%increases in amounts of incident and intercepted radiation for the HIJR relative to the IR during grain filling.These results indicate that the SI superiority of the HIJR was caused by canopy closure as rapid as that of the IR during the vegetative stage(greater LAI and canopy LIR during the growing season)and a grain-filling stage as long as that of the HJR.For grain-filling stage,differences in leaf Pn between HIJR,IR,and IJR were not significant,suggesting that the greater RUE of the HIJR(12.7%–52.8%higher)than that of the other rice types resulted from improved canopy architecture after flowering(FL).Principal components analysis(PCA)revealed that the superiority of the HIJR in terms of solar radiation use resulted from the greater canopy light capture capability of IR and the prolonged growth period(especially during grain filling)of japonica rice in the late growing season.
基金Supported by China and CAS Main Direction Program of Knowledge Innovation (KSCX2-EW-B-1)China and CAS Knowledge Innovation Project(KSCX1-YW-09-06)
文摘A field experiment was conducted to elucidate the regulation mechanism of different irrigation schedules on population photosynthetic of winter wheat. The experiment included five irrigation schedules, such as no irrigation (W0), irrigation once at jointing (W1j) or at booting (W1b), irrigation twice at jointing and booting (W2), and irrigation three times at jointing, booting and grain-filling (W3) and three planting densities, such as 180 (D1), 300 (D2) and 450 (D3) seedlings per square meter. The results indicated that irrigation significantly improved population photosynthesis. The relationship between population photosynthesis and irrigation time/volume was to some extent parabolic. Improvements in population photosynthesis (resulting from more irrigation time/volume) were mainly related to increase in leaf area index and population light interception. Population photosynthesis exhibited a significantly negative correlation with canopy light transmittance. Population photosynthesis at grain filling stage was significantly positively correlated with dry matter accumulation at post-anthesis and grain yield. Main effects and partial correlation analysis showed that population photosynthesis of W0, W1j, W1b and W3 were regulated by canopy light transmittance and leaf area. On the other hand, population photosynthesis of W2 was mainly influenced by flag leaf photosynthetic rate. On this basis, planting 300 seedlings per square meter was the optimum combination. The combination of W2D2 increased population photosynthesis during mid-late growth stages and extended high population photosynthesis duration, which ultimately increased grain yield.
基金This research was financially supported in part by the National Natural Science Foundation of China(Grant No.52009044,51779093)partly by the High-level Talent Research Project of North China University of Water Resources and Electric Power(Grant No.201705017)+1 种基金partly by the National Key Research and Development Program(Grant No.2019YFC0408803)partly by Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China(Hohai University),Ministry of Education(Grant No.2017B20414-2)
文摘Photosynthesis is related to dry matter accumulation in aboveground part of rice plant,which is the direct factor of production.This study carried out research on physiological indicators and the relationship between photosynthesis and dry matter accumulation under different water management in paddy field.In general,the photosynthetic and physiological indicators showed the trend of increasing and then decreasing with the growth stage of rice.Experimental results showed that,chlorophyll content and leaf area index of rice leaves showed a quadratic curve positive correlation.Canopy light transmission reached the maximum at heading-flowering stage,and it had quadratic relationship with leaf area index,while it showed extremely positive correlation under rain-water storage irrigation mode.Photosynthetic rate(Pn)and transpiration rate(Tr)had quadratic curve positive correlation with chlorophyll content.The water condition under rain-water storage was favorable for dry matter accumulation in panicle.After multiple regression and main factor analysis,canopy light transmission,light transmission coefficient and Pn were main factors related to dry matter accumulation.The conclusions in this article were helpful for promoting rice yield in practice.