We have reported new magnetic and optical properties of Mn2O3 nanostructures. The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system. The p...We have reported new magnetic and optical properties of Mn2O3 nanostructures. The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system. The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), UV-visible spectroscopy, and the vibrating sample magnetometer (VSM). Structural investigation manifests that the synthesized Mn2O3 nanostructures are orthorhombic crystal. Magnetic investigation indicates that the Mn2O3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at TN = 83 K. Furthermore, the Mn2O3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration, resulting in hysteresis with large coercivity (1580 Oe) and remnant magnetization (1.52 emu/g). The UV-visible spectrophotometry was used to determine the transmittance behaviour of Mn203 nanostructures. A direct optical band gap of 1.2 eV was acquired by using the Davis-Mott model. The UV-visible spectrum indicates that the absorption is prominent in the visible region, and transparency is more than 80% in the UV region.展开更多
High quality single crystal CaFe4As3 was grown by using the Sn flux method. Unlike layered CaFe2As2, CaFe4As3 crystallizes in an orthorhombic three-dimensional structure. Two magnetic ordering transitions are observed...High quality single crystal CaFe4As3 was grown by using the Sn flux method. Unlike layered CaFe2As2, CaFe4As3 crystallizes in an orthorhombic three-dimensional structure. Two magnetic ordering transitions are observed at - 90 K and - 27 K, respectively. The high temperature transition is an antiferromagnetic(AF) ordering transition. However, the low temperature transition shows complex properties. It shows a ferromagnetic-like transition when a field is applied along b-axis, while antiferromagnetism-like transition when a field is applied perpendicular to b-axis. These results suggest that the low temperature transition at 27 K is a first-order transition from an AF state to a canted AF state. In addition, the low temperature electron specific heat coefficient reaches as high as 143 mJ/mol.K2, showing a heavy fermion behavior.展开更多
基金Project supported by the Fundamental Development Fund and Chancellor Scholarship Program,China (Grant No.YJ2010-014)the Fundamental Research Funds for the Central Universities of China (Grant No. FRF-BR-09-007A)
文摘We have reported new magnetic and optical properties of Mn2O3 nanostructures. The nanostructures have been synthesized by the hydrothermal method combined with the adjustment of pH values in the reaction system. The particular characteristics of the nanostructures have been analyzed by employing X-Ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS), UV-visible spectroscopy, and the vibrating sample magnetometer (VSM). Structural investigation manifests that the synthesized Mn2O3 nanostructures are orthorhombic crystal. Magnetic investigation indicates that the Mn2O3 nanostructures are antiferromagnetic and the antiferromagnetic transition temperature is at TN = 83 K. Furthermore, the Mn2O3 nanostructures possess canted antiferromagnetic order below the Neel temperature due to spin frustration, resulting in hysteresis with large coercivity (1580 Oe) and remnant magnetization (1.52 emu/g). The UV-visible spectrophotometry was used to determine the transmittance behaviour of Mn203 nanostructures. A direct optical band gap of 1.2 eV was acquired by using the Davis-Mott model. The UV-visible spectrum indicates that the absorption is prominent in the visible region, and transparency is more than 80% in the UV region.
基金Project supported by the National Natural Science Foundation of China(Grant No.Y1JA011x11)
文摘High quality single crystal CaFe4As3 was grown by using the Sn flux method. Unlike layered CaFe2As2, CaFe4As3 crystallizes in an orthorhombic three-dimensional structure. Two magnetic ordering transitions are observed at - 90 K and - 27 K, respectively. The high temperature transition is an antiferromagnetic(AF) ordering transition. However, the low temperature transition shows complex properties. It shows a ferromagnetic-like transition when a field is applied along b-axis, while antiferromagnetism-like transition when a field is applied perpendicular to b-axis. These results suggest that the low temperature transition at 27 K is a first-order transition from an AF state to a canted AF state. In addition, the low temperature electron specific heat coefficient reaches as high as 143 mJ/mol.K2, showing a heavy fermion behavior.