Finding the right spatially aware web service in a heterogeneous distributed environment using criteria such as service type,version,time,space,and scale has become a challenge in the integration of geospatial informa...Finding the right spatially aware web service in a heterogeneous distributed environment using criteria such as service type,version,time,space,and scale has become a challenge in the integration of geospatial information services.A new method for retrieving Open Geospatial Consortium(OGC)Web Service(OWS)that deals with this challenge using page crawling,link detection,service capability matching,and ontology reasoning,is described in this paper.Its major components are distributed OWS,the OWS search engine,the OWS ontology generator,the ontology-based OWS catalog service,and the ontology-based multi-protocol OWS client.Experimental results show that the execution time of this proposed method equals only 0.26 of that of Nutch’s method.In addition,the precision is much higher.Moreover,this proposed method can carry out complex OWS reasoning-based queries.It is being used successfully for the Antarctica multi-protocol OWS portal of the Geo-Information Web Service Portal of the Polar.展开更多
This report described a free-enzyme, convenient and inexpensive genotyping biosensor capable of detecting single nucleotide polymorphism at normal temperature based on the combination of toeholdmediated strand displac...This report described a free-enzyme, convenient and inexpensive genotyping biosensor capable of detecting single nucleotide polymorphism at normal temperature based on the combination of toeholdmediated strand displacement reaction(toehold-SDR) and microbead-capture technique. The biosensor consists of a pre-hybridized strand formed by a reporter probe and a capture probe. In the presence of a mutant sequence, there is no toehold-mediated strand displacement and the reporter probe cannot be released from the pre-hybridized strand. Microbeads capture the fluorescent pre-hybridized strand through biotin–streptavidin interaction, so microbeads give out significant fluorescence signal, while there is no fluorescence in the solution. However, in the presence of a matched target, the strand displacement is effectively initiated and the reporter probe is released from pre-hybridized strand. After adding microbeads, the solution produces bright fluorescence, while microbeads have no obvious signal.Genotypes are identified conveniently according to the fluorescence intensity of the solution. The method provides a simple and inexpensive strategy to detect point mutation. Moreover, this biosensor shows the linear relationship in the range of 1–40 nmol/L and reaches a detection limit of 0.3 nmol/L.? 2015 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.Published by Elsevier B.V. All rights reserved.展开更多
基金This work has been supported in part by the National Basic Research Program of China(973 Program)under Grant 2011CB707101the National Natural Science Foundation of China under Grant 41023001,41021061the ShenZhen R&D Foundation under Grant CXB200903090023A.
文摘Finding the right spatially aware web service in a heterogeneous distributed environment using criteria such as service type,version,time,space,and scale has become a challenge in the integration of geospatial information services.A new method for retrieving Open Geospatial Consortium(OGC)Web Service(OWS)that deals with this challenge using page crawling,link detection,service capability matching,and ontology reasoning,is described in this paper.Its major components are distributed OWS,the OWS search engine,the OWS ontology generator,the ontology-based OWS catalog service,and the ontology-based multi-protocol OWS client.Experimental results show that the execution time of this proposed method equals only 0.26 of that of Nutch’s method.In addition,the precision is much higher.Moreover,this proposed method can carry out complex OWS reasoning-based queries.It is being used successfully for the Antarctica multi-protocol OWS portal of the Geo-Information Web Service Portal of the Polar.
基金supported by National Natural Science Foundation of China(No.21275043)National Basic Research Program of China under Grants(No.2009CB421601)
文摘This report described a free-enzyme, convenient and inexpensive genotyping biosensor capable of detecting single nucleotide polymorphism at normal temperature based on the combination of toeholdmediated strand displacement reaction(toehold-SDR) and microbead-capture technique. The biosensor consists of a pre-hybridized strand formed by a reporter probe and a capture probe. In the presence of a mutant sequence, there is no toehold-mediated strand displacement and the reporter probe cannot be released from the pre-hybridized strand. Microbeads capture the fluorescent pre-hybridized strand through biotin–streptavidin interaction, so microbeads give out significant fluorescence signal, while there is no fluorescence in the solution. However, in the presence of a matched target, the strand displacement is effectively initiated and the reporter probe is released from pre-hybridized strand. After adding microbeads, the solution produces bright fluorescence, while microbeads have no obvious signal.Genotypes are identified conveniently according to the fluorescence intensity of the solution. The method provides a simple and inexpensive strategy to detect point mutation. Moreover, this biosensor shows the linear relationship in the range of 1–40 nmol/L and reaches a detection limit of 0.3 nmol/L.? 2015 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.Published by Elsevier B.V. All rights reserved.