As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wi...As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wind power(WP).Due to the randomness of WP output,higher requirements are put forward for the voltage stability of each node of the regional power grid,and various reactive power compensation devices(RPCDs)need to be rationally configured to meet the stable operation requirements of the system.This paper proposes an optimal configuration method for multi-type RPCDs in regional power grids with a high proportion of WP.The RPCDs are located according to the proposed static voltage stability index(VSI)and dynamicVSI based on dynamic voltage drop area,and the optimal configuration model of RPCDs is constructed with the lowest construction cost as the objective function to determine the installed capacity of various RPCDs.Finally,the corresponding regional power grid model for intensive access to WFs is constructed on the simulation platform to verify the effectiveness of the proposed method.展开更多
In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design...In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.展开更多
This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automati...This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.展开更多
Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving ...Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.展开更多
The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easi...The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.展开更多
Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyrist...Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyristor control reactor reac- tive power compensation system and TCR single closed loop strategy was pro- posed. In addition, as digital simulation software, Arene was applied to simulate the Jining coal mine No.2 system. The simulation results validate that the design is effective to improve power factor and stabilization of the system.展开更多
Frequent occurrence of large-scale cascading trip-off of wind turbine raises the concern about the decision process of ordered control of reactive power compensation devices. The theory of fuzzy multi-attribute decisi...Frequent occurrence of large-scale cascading trip-off of wind turbine raises the concern about the decision process of ordered control of reactive power compensation devices. The theory of fuzzy multi-attribute decision making is adopted to ascertain the action sequence of reactive power compensation devices. First, a set of evaluation indexes including control sensitivity, regulation margin, response time, response level and cost is set up, and fuzziness of the proposed qualitative indexes is introduced to make them comparable to the proposed quantitative indexes. Then a method to calculate fuzzy weight of each index is put forward for evaluating relative importance of the proposed indexes. Finally, the action sequence of reactive power compensation devices is determined through the theory of fuzzy compromise decision making. The case study shows that the proposed method is effective to obtain the action sequence of reactive power compensation device which correspond to experience.展开更多
The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.T...The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse.Firstly,an integrated reactive power planning(RPP)model with power factor constraints is established.Capacitors and reactors are considered to be installed in the distribution system at the same time.The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period.Nodal power factor limits and reactor capacity constraints are new constraints.Then,power factor sensitivity with respect to reactive power is derived.An improved genetic algorithm by power factor sensitivity is used to solve the model.The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit.Finally,the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.展开更多
In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect ...In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.展开更多
The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection th...The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection theory. There have been presented selected theories application in order to compensate the reactive power in one-phase circuits. The measurement results before the compensation have been discussed and measurement results after compensation of an actual object supplied from an non-sinusoidal voltage source were presented. The algorithms of optimal capacity selection were given, which connected in parallel to the circuit with inductive character will cause current root-mean-square value minimization. The measurement results after applying the reactive power minimization algorithm have shown improvement in compensation of strongly nonlinear receivers supplied with distorted signals.展开更多
In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of ...In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.展开更多
A parameter that allows an evaluation of power quality transmitted, or distributed, between energy source and the final user is electric system power factor. Among other aspects, a bigger power factor, close to unit v...A parameter that allows an evaluation of power quality transmitted, or distributed, between energy source and the final user is electric system power factor. Among other aspects, a bigger power factor, close to unit value, relieves operational conditions of lines and cables, besides, it improves feeder's voltage behavior. Due to load variation along the day, the dynamic compensation of power factor allows maintaining this parameter close to the ideal. This paper brings a study about a reactive dynamic compensator based on the voltage control in a capacitive element, varying the reactive energy in accordance with the system demand, everything from the energy efficiency point of view. In distribution systems, the losses due to this variable compensation can be lower than in other compensation methods and also the voltage presents a better behavior, justifying its application.展开更多
A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power netwo...A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.展开更多
Combining compensating customers and emergency sourcing,a type of dynamic mitigation strategy is proposed to deal with supply disruptions.When a stock-out occurs,the retailer can control backorders by the compensation...Combining compensating customers and emergency sourcing,a type of dynamic mitigation strategy is proposed to deal with supply disruptions.When a stock-out occurs,the retailer can control backorders by the compensation level,and meet demand through an emergency source along with a high price.The unsatisfied customers decide to backorder or quit orders depending on the compensation level,the waiting time,and the customers’patience.By dynamically capturing customers’post-disruption reactions,an optimal control model is formulated to minimize the cost incurred by the supply disruption.Solving the model,the optimal reactive strategy is proposed in six patterns:a pure sourcing,a pure compensation,a mixed policy,a mixed policy-pure sourcing,a mixed policy-pure compensation,and a pure compensation-mixed policy,mainly depending on the compensation cost,the disruption length,and the customers’patience.The strategies analytically indicate how to properly change the compensation level and sourcing quantity as the disruption continues.The conditions for effectively using each strategy are provided as well.展开更多
Effective reactive power compensation is very important to the safe,economical and high quality running of power system.The principle and characteristic of several main reactive power compensation devices were analyze...Effective reactive power compensation is very important to the safe,economical and high quality running of power system.The principle and characteristic of several main reactive power compensation devices were analyzed and compared in details, and the development trend and application prospect were viewed.展开更多
This article presents a comprehensive review for the dilemma of reactive power flow, while addressing different proposed remedy strategies: conventional and most update solutions. Robust analytical expressions were ut...This article presents a comprehensive review for the dilemma of reactive power flow, while addressing different proposed remedy strategies: conventional and most update solutions. Robust analytical expressions were utilized to exploit the functionality of the proposed solutions and to show clearly the relation between the reactive power and control variables. The article, moreover, proposes a simple, innovative and robust analysis for static performance of the STATCOM. This approach shows clearly the advantages of the STA-TCOM in regulating reactive power and maintaining load voltage level within presumable limits. The approach, furthermore, reveals explicitly via analytical expressions the impact of the STATCOM operation on different aspects of the power system under concern.展开更多
The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled com...The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.展开更多
A CMOS (complementary metal-oxide-semiconductor transistor) low-dropout regulator (LDO) with 3. 3 V output voltage and 100 mA output current for system-on-chip applications to reduce board space and external pins ...A CMOS (complementary metal-oxide-semiconductor transistor) low-dropout regulator (LDO) with 3. 3 V output voltage and 100 mA output current for system-on-chip applications to reduce board space and external pins is presented. By utilizing a dynamic slew-rate enhancement(SRE) circuit and nested Miller compensation (NMC) on the LDO structure, the proposed LDO provides high stability during line and load regulation without off-chip load capacitors. The overshot voltage is limited within 550 mV and the settling time is less than 50 μs when the load current decreases from 100 mA to 1 mA. By using a 30 nA reference current, the quiescent current is 3.3 μA. The proposed design is implemented by CSMC 0. 5 μm mixed-signal process. The experimental results agree with the simulation results.展开更多
Unified power quality conditioner(UPQC)holds the capability of solving power quality problems,especially shows good performance in the voltage sag compensation. In this paper, a compensation strategy based on simultan...Unified power quality conditioner(UPQC)holds the capability of solving power quality problems,especially shows good performance in the voltage sag compensation. In this paper, a compensation strategy based on simultaneous reactive power injection for UPQC(namely UPQC-SRI) is proposed to address the issue of voltage sag. The proposed UPQC-SRI determines the injection angle of compensation voltage with consideration of optimal configuration of UPQC current-carrying.Moreover, the compensation strategy also considers the current-carrying limit of UPQC, and then the zero active power injection region of UPQC-SRI(also called UPQCSRI region) is obtained. Under the conditions which exceed the UPQC-SRI region, the limit value of shunt current is determined by this proposed strategy. Finally, the proposed strategy and the corresponding algorithm are verified under the PSCAD/EMTDC platform. The result indicates the proposed UPQC-SRI strategy in this paper can provide more persistent voltage sag compensation than the previous strategies for the sensitive load.展开更多
The purpose of this study is to solve the main problems in distribution networks,including increased line loss and reduced power supply quality caused by insufficient capacitive reactive power.To reduce the capacity,v...The purpose of this study is to solve the main problems in distribution networks,including increased line loss and reduced power supply quality caused by insufficient capacitive reactive power.To reduce the capacity,voltage,and current stress of an active module of a compensation device and improve the cost performance of the device,an improved hybrid reactive power compensation system based on a fixed capacitor(FC)and a static synchronous compensator(STATCOM)is proposed.The topological structure and basic operating principle of the proposed reactive power compensation system are introduced.In addition,from the perspectives of output voltage,current,power,loss of the active part,and system compensation cost,the performances of the proposed reactive compensator and the inductively coupled STATCOM(L-STATCOM)are compared and analyzed.Furthermore,the key parameters of the proposed system are designed,and the joint optimization control strategy of the FC and STATCOM is studied.The correctness and effectiveness of the proposed topology structure and control method are verified by simulations.展开更多
基金supported by the Science and Technology Project of State Grid Corporation Headquarters(No.5100-202323008A-1-1-ZN).
文摘As the large-scale development of wind farms(WFs)progresses,the connection ofWFs to the regional power grid is evolving from the conventional receiving power grid to the sending power grid with a high proportion of wind power(WP).Due to the randomness of WP output,higher requirements are put forward for the voltage stability of each node of the regional power grid,and various reactive power compensation devices(RPCDs)need to be rationally configured to meet the stable operation requirements of the system.This paper proposes an optimal configuration method for multi-type RPCDs in regional power grids with a high proportion of WP.The RPCDs are located according to the proposed static voltage stability index(VSI)and dynamicVSI based on dynamic voltage drop area,and the optimal configuration model of RPCDs is constructed with the lowest construction cost as the objective function to determine the installed capacity of various RPCDs.Finally,the corresponding regional power grid model for intensive access to WFs is constructed on the simulation platform to verify the effectiveness of the proposed method.
文摘In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.
文摘This paper introduces in detail the reactive power compensation technology and its characteristics, to reduce the loss of reactive power compensation technology 1N power distribution system and the electrical automation, improve the utilization rate, and realize the control of the voltage amplitude in the system network, voltage stability of power distribution system, has carried on the system analysis to reduce failure of the harmonic current to the power supply system and other functions. And the paper in-depth study on the application of reactive power compensation technology in electrical automation from the reactive compensation technology, substation and distribution line reactive power compensation, power users of reactive power compensation and other aspects.
文摘Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.
文摘The paper introduces one design idea that making use of SCM to control Real-timely the dynamic compensation of reactive power.Firstly,design one Circuit to Sample the voltage and current,and by these datas we can easily calculate the power factor,and Voltage controller in the microcontroller to determine whether input the compensation capacitance according to the size of power factor,the paper also analyzes the principle of capacitance compensation and calculation method. Dynamic compensation for the entire process is quick and accurate.
文摘Inevitably, the question of reactive power compensation was aroused by applied of power electronics. Based on the study of the instantaneous reactive power theory, the designs of TCR(thyristor control reactor) thyristor control reactor reac- tive power compensation system and TCR single closed loop strategy was pro- posed. In addition, as digital simulation software, Arene was applied to simulate the Jining coal mine No.2 system. The simulation results validate that the design is effective to improve power factor and stabilization of the system.
文摘Frequent occurrence of large-scale cascading trip-off of wind turbine raises the concern about the decision process of ordered control of reactive power compensation devices. The theory of fuzzy multi-attribute decision making is adopted to ascertain the action sequence of reactive power compensation devices. First, a set of evaluation indexes including control sensitivity, regulation margin, response time, response level and cost is set up, and fuzziness of the proposed qualitative indexes is introduced to make them comparable to the proposed quantitative indexes. Then a method to calculate fuzzy weight of each index is put forward for evaluating relative importance of the proposed indexes. Finally, the action sequence of reactive power compensation devices is determined through the theory of fuzzy compromise decision making. The case study shows that the proposed method is effective to obtain the action sequence of reactive power compensation device which correspond to experience.
文摘The capacitive reactive power reversal in the urban distribution grid is increasingly prominent at the period of light load in the last years.In severe cases,it will endanger the security and stability of power grid.This paper presents an optimal reactive power compensation method of distribution network to prevent reactive power reverse.Firstly,an integrated reactive power planning(RPP)model with power factor constraints is established.Capacitors and reactors are considered to be installed in the distribution system at the same time.The objective function is the cost minimization of compensation and real power loss with transformers and lines during the planning period.Nodal power factor limits and reactor capacity constraints are new constraints.Then,power factor sensitivity with respect to reactive power is derived.An improved genetic algorithm by power factor sensitivity is used to solve the model.The optimal locations and sizes of reactors and capacitors can avoid reactive power reversal and power factor exceeding the limit.Finally,the effectiveness of the model and algorithm is proven by a typical high-voltage distribution network.
文摘In order to improve the power factor of the circuit, the article takes STM32 as core circuit to development reactive power compensation controller for low voltage intelligent reactive compensation. Circuit can detect electricity distribution network parameters, and send messages to mobile phone via SMS text messages by TC35 module, remote control compensation capacitor configuration parameters. Circuit with a flexible, reliable, convenient and practical features. This paper analyzes the structure of the controller hardware and software, and describes the hardware schematic circuit diagram and software diagram of the controller. Controller with integrated control, maximize the use of compensating equipment to improve grid power quality.
文摘The article states about reactive power compensation methods for circuits with non-sinusoidal voltages. An basic introduction to reactive power theory has been given, together with the optimal capacitance selection theory. There have been presented selected theories application in order to compensate the reactive power in one-phase circuits. The measurement results before the compensation have been discussed and measurement results after compensation of an actual object supplied from an non-sinusoidal voltage source were presented. The algorithms of optimal capacity selection were given, which connected in parallel to the circuit with inductive character will cause current root-mean-square value minimization. The measurement results after applying the reactive power minimization algorithm have shown improvement in compensation of strongly nonlinear receivers supplied with distorted signals.
文摘In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.
文摘A parameter that allows an evaluation of power quality transmitted, or distributed, between energy source and the final user is electric system power factor. Among other aspects, a bigger power factor, close to unit value, relieves operational conditions of lines and cables, besides, it improves feeder's voltage behavior. Due to load variation along the day, the dynamic compensation of power factor allows maintaining this parameter close to the ideal. This paper brings a study about a reactive dynamic compensator based on the voltage control in a capacitive element, varying the reactive energy in accordance with the system demand, everything from the energy efficiency point of view. In distribution systems, the losses due to this variable compensation can be lower than in other compensation methods and also the voltage presents a better behavior, justifying its application.
文摘A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.
基金The National Natural Science Foundation of China(No.71771053,71371003)the Key Research and Development Plan(M odern Agriculture)of Jiangsu Province(No.BE2018385)the Fundamental Research Funds for the Central Universities
文摘Combining compensating customers and emergency sourcing,a type of dynamic mitigation strategy is proposed to deal with supply disruptions.When a stock-out occurs,the retailer can control backorders by the compensation level,and meet demand through an emergency source along with a high price.The unsatisfied customers decide to backorder or quit orders depending on the compensation level,the waiting time,and the customers’patience.By dynamically capturing customers’post-disruption reactions,an optimal control model is formulated to minimize the cost incurred by the supply disruption.Solving the model,the optimal reactive strategy is proposed in six patterns:a pure sourcing,a pure compensation,a mixed policy,a mixed policy-pure sourcing,a mixed policy-pure compensation,and a pure compensation-mixed policy,mainly depending on the compensation cost,the disruption length,and the customers’patience.The strategies analytically indicate how to properly change the compensation level and sourcing quantity as the disruption continues.The conditions for effectively using each strategy are provided as well.
文摘Effective reactive power compensation is very important to the safe,economical and high quality running of power system.The principle and characteristic of several main reactive power compensation devices were analyzed and compared in details, and the development trend and application prospect were viewed.
文摘This article presents a comprehensive review for the dilemma of reactive power flow, while addressing different proposed remedy strategies: conventional and most update solutions. Robust analytical expressions were utilized to exploit the functionality of the proposed solutions and to show clearly the relation between the reactive power and control variables. The article, moreover, proposes a simple, innovative and robust analysis for static performance of the STATCOM. This approach shows clearly the advantages of the STA-TCOM in regulating reactive power and maintaining load voltage level within presumable limits. The approach, furthermore, reveals explicitly via analytical expressions the impact of the STATCOM operation on different aspects of the power system under concern.
文摘The dynamic reactive power compensation equipment in Jiuquan Wind Power Base of above 10 GW consists of three different types of compensation devices, including: static var generator (SVG), thyristor controlled compensator (TGR) and magnetically controlled reactor (MGR). The lack of experimental verification of performance is not conducive to voltage/var management or full utilization of device capaci- ties. In order to solve the above problems, the compensation device performance test was performed. The test items and procedures were selected based on related national standards with the consideration for different grid structures and wind farm operation modes. The testing contents included dynamic regulating range, active power loss, dynamic response time, and harmonic voltage level. Three types of compensation devices installed in different wind farms, namely SVG, TCR and MCR, were chosen and tested. The performances were compared and analyzed according to the field test results.
基金The Key Science and Technology Project of Zhejiang Province(No.2007C21021)
文摘A CMOS (complementary metal-oxide-semiconductor transistor) low-dropout regulator (LDO) with 3. 3 V output voltage and 100 mA output current for system-on-chip applications to reduce board space and external pins is presented. By utilizing a dynamic slew-rate enhancement(SRE) circuit and nested Miller compensation (NMC) on the LDO structure, the proposed LDO provides high stability during line and load regulation without off-chip load capacitors. The overshot voltage is limited within 550 mV and the settling time is less than 50 μs when the load current decreases from 100 mA to 1 mA. By using a 30 nA reference current, the quiescent current is 3.3 μA. The proposed design is implemented by CSMC 0. 5 μm mixed-signal process. The experimental results agree with the simulation results.
基金supported by the twelfth five-year National Mega-projects of Science and Technology (2011BAA01B03)
文摘Unified power quality conditioner(UPQC)holds the capability of solving power quality problems,especially shows good performance in the voltage sag compensation. In this paper, a compensation strategy based on simultaneous reactive power injection for UPQC(namely UPQC-SRI) is proposed to address the issue of voltage sag. The proposed UPQC-SRI determines the injection angle of compensation voltage with consideration of optimal configuration of UPQC current-carrying.Moreover, the compensation strategy also considers the current-carrying limit of UPQC, and then the zero active power injection region of UPQC-SRI(also called UPQCSRI region) is obtained. Under the conditions which exceed the UPQC-SRI region, the limit value of shunt current is determined by this proposed strategy. Finally, the proposed strategy and the corresponding algorithm are verified under the PSCAD/EMTDC platform. The result indicates the proposed UPQC-SRI strategy in this paper can provide more persistent voltage sag compensation than the previous strategies for the sensitive load.
基金Supported by the General Project of Hunan Natural Science Foundation(2021JJ30715)the Scientific Research Fund of Hunan Provincial Education Department(20B029)the Graduate Research Innovation Project of Changsha University of Science&Technology(CX2021SS52).
文摘The purpose of this study is to solve the main problems in distribution networks,including increased line loss and reduced power supply quality caused by insufficient capacitive reactive power.To reduce the capacity,voltage,and current stress of an active module of a compensation device and improve the cost performance of the device,an improved hybrid reactive power compensation system based on a fixed capacitor(FC)and a static synchronous compensator(STATCOM)is proposed.The topological structure and basic operating principle of the proposed reactive power compensation system are introduced.In addition,from the perspectives of output voltage,current,power,loss of the active part,and system compensation cost,the performances of the proposed reactive compensator and the inductively coupled STATCOM(L-STATCOM)are compared and analyzed.Furthermore,the key parameters of the proposed system are designed,and the joint optimization control strategy of the FC and STATCOM is studied.The correctness and effectiveness of the proposed topology structure and control method are verified by simulations.