In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of ...In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.展开更多
A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power netwo...A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.展开更多
Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving ...Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.展开更多
A CMOS (complementary metal-oxide-semiconductor transistor) low-dropout regulator (LDO) with 3. 3 V output voltage and 100 mA output current for system-on-chip applications to reduce board space and external pins ...A CMOS (complementary metal-oxide-semiconductor transistor) low-dropout regulator (LDO) with 3. 3 V output voltage and 100 mA output current for system-on-chip applications to reduce board space and external pins is presented. By utilizing a dynamic slew-rate enhancement(SRE) circuit and nested Miller compensation (NMC) on the LDO structure, the proposed LDO provides high stability during line and load regulation without off-chip load capacitors. The overshot voltage is limited within 550 mV and the settling time is less than 50 μs when the load current decreases from 100 mA to 1 mA. By using a 30 nA reference current, the quiescent current is 3.3 μA. The proposed design is implemented by CSMC 0. 5 μm mixed-signal process. The experimental results agree with the simulation results.展开更多
In order to increase the available power of the electrical energy distribution station and improve the voltage profile of the distribution lines, the use of shunt capacitor banks is indicated. The main results obtaine...In order to increase the available power of the electrical energy distribution station and improve the voltage profile of the distribution lines, the use of shunt capacitor banks is indicated. The main results obtained during this study are: a reduction in subscribed power from 14913.978 kVA to 14010.100 kVA, a reduction in the transformer load rate from 99.4% to 93.4%, a reduction in reactive power called from 5481.729 kVAr to 481.729 kVAr, an increase in the active power transported by the substation from 8505.062 kW to 8962.323 kW, a reduction in the voltage drop from 4.8% to 3.9%, an increase in the power available at the secondary of the transformer station at full load from 13950 kW to 14700 kW and an annual electrical energy saving of 339943.48 kWh of electrical energy, therefore fuel savings and a reduction in CO<sub>2</sub> and SO<sub>2</sub> emissions due to this energy saving will be achieved. The installation of capacitor banks for optimization of reactive energy allowed a reduction in the current called therefore a reduction in the absorbed power: 14153.061 kVA, i.e. a reduction of 903.876 kVA. It is therefore essential that energy players are convinced of the need to install capacitors to reduce or even eliminate their reactive energy bill. This is necessarily accompanied by an investment by Electricité De Guinée by setting up active and reactive energy meters but also by implementing pricing in line with the reduction in the transfer of reactive energy in the network.展开更多
An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutin...An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.展开更多
A high-speed high-accuracy fully differenttial operational amplifier (op-amp) is realized based on no-Miller-capacitor feedforward (NMCF) compensation scheme. In order to achieve a good phase margin, the NMCF comp...A high-speed high-accuracy fully differenttial operational amplifier (op-amp) is realized based on no-Miller-capacitor feedforward (NMCF) compensation scheme. In order to achieve a good phase margin, the NMCF compensation scheme uses the positive phase shift of left-half-plane (LHP) zero caused by the feedforvvard path to counteract the negative phase shift of the non-dominant pole. Compared to traditional Miller compensation method, the op-amp obtains high gain and wide band synchronously without the pole-splitting effect while saves significant chip area due to the absence of the Miller capacitor. Simulated by the 0.35 μm CMOS RF technology, the result shows that the open-loop gain of the op-amp is 118 dB with the unity gain-bandwidth (UGBW) of 1 GHz, and the phase margin is 61°while the settling time is 5.8 ns when achieving 0.01% accuracy. The op-amp is especially suitable for the front-end sample/hold (S/H) cell and the multiplying D/A converter (MDAC) module of the high-speed high-resolution pipelined A/D converters (AVCs).展开更多
In this paper,an introduction to the bifurcation theory and its applicability to the study of sub-synchronous resonance (SSR) phenomenon in power system are presented. The continuation and bifurcation analysis softwar...In this paper,an introduction to the bifurcation theory and its applicability to the study of sub-synchronous resonance (SSR) phenomenon in power system are presented. The continuation and bifurcation analysis software AUTO97 is adopted to investigate SSR for a single-machine-infinite-bus power system with series capacitor compensation. The investigation results show that SSR is the result of unstable limit cycle after bifurcation. When the system exhibits SSR, some complex periodical orbit bifurcations, such as torus bifurcation and periodical fold bifurcation, may happen with the variation of limit cycle. Furthermore, the initial operation condition may greatly influence the ultimate state of the system. The time-domain simulation is carried out to verify the effectiveness of the results obtained from the bifurcation analysis.展开更多
文摘In order to improve the voltage quality of rural power distribution network, the series capacitor in distribution lines is proposed. The principle of series capacitor compensation technology to improve the quality of rural power distribution lines voltage is analyzed. The real rural power distribution network simulation model is established by Power System Power System Analysis Software Package (PSASP). Simulation analysis the effect of series capacitor compensation technology to improve the voltage quality of rural power distribution network, The simulation results show that the series capacitor compensation can effectively improve the voltage quality and reduce network losses and improve the transmission capacity of rural power distribution network.
文摘A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.
文摘Many industrial installations in developing countries start-up as small factories, without regard for the need of compensation of reactive power, leading to significant financial losses in the long term. By improving the power factor, the customer can reduce its power demand and potentially increase efficiency of their equipment. A PIC microcontroller is used to switch capacitor banks to compensate for the reactive power. In order to determine the size of the capacitor bank needed, the microcontroller calculates the phase difference between the voltage and the current. The results obtained based on the lagging power factor for three test loads show an improvement in the power factor from 0.52 to 0.96 under different test load conditions.
基金The Key Science and Technology Project of Zhejiang Province(No.2007C21021)
文摘A CMOS (complementary metal-oxide-semiconductor transistor) low-dropout regulator (LDO) with 3. 3 V output voltage and 100 mA output current for system-on-chip applications to reduce board space and external pins is presented. By utilizing a dynamic slew-rate enhancement(SRE) circuit and nested Miller compensation (NMC) on the LDO structure, the proposed LDO provides high stability during line and load regulation without off-chip load capacitors. The overshot voltage is limited within 550 mV and the settling time is less than 50 μs when the load current decreases from 100 mA to 1 mA. By using a 30 nA reference current, the quiescent current is 3.3 μA. The proposed design is implemented by CSMC 0. 5 μm mixed-signal process. The experimental results agree with the simulation results.
文摘In order to increase the available power of the electrical energy distribution station and improve the voltage profile of the distribution lines, the use of shunt capacitor banks is indicated. The main results obtained during this study are: a reduction in subscribed power from 14913.978 kVA to 14010.100 kVA, a reduction in the transformer load rate from 99.4% to 93.4%, a reduction in reactive power called from 5481.729 kVAr to 481.729 kVAr, an increase in the active power transported by the substation from 8505.062 kW to 8962.323 kW, a reduction in the voltage drop from 4.8% to 3.9%, an increase in the power available at the secondary of the transformer station at full load from 13950 kW to 14700 kW and an annual electrical energy saving of 339943.48 kWh of electrical energy, therefore fuel savings and a reduction in CO<sub>2</sub> and SO<sub>2</sub> emissions due to this energy saving will be achieved. The installation of capacitor banks for optimization of reactive energy allowed a reduction in the current called therefore a reduction in the absorbed power: 14153.061 kVA, i.e. a reduction of 903.876 kVA. It is therefore essential that energy players are convinced of the need to install capacitors to reduce or even eliminate their reactive energy bill. This is necessarily accompanied by an investment by Electricité De Guinée by setting up active and reactive energy meters but also by implementing pricing in line with the reduction in the transfer of reactive energy in the network.
文摘An accurate fault location algorithm for double-circuit series compensated lines is presented.Use of two-end unsynchronized measurements of current and voltage signals is considered.The algorithm applies two subroutines,designated for locating faults on particular line sections,and additionally the procedure for selecting the valid subroutine.The subroutines are formulated with use of the generalized fault loop model and the distributed parameter line model is applied.Performed ATP-EMTP based evaluation has shown the validity of the derived fault location algorithm and its high accuracy.
文摘A high-speed high-accuracy fully differenttial operational amplifier (op-amp) is realized based on no-Miller-capacitor feedforward (NMCF) compensation scheme. In order to achieve a good phase margin, the NMCF compensation scheme uses the positive phase shift of left-half-plane (LHP) zero caused by the feedforvvard path to counteract the negative phase shift of the non-dominant pole. Compared to traditional Miller compensation method, the op-amp obtains high gain and wide band synchronously without the pole-splitting effect while saves significant chip area due to the absence of the Miller capacitor. Simulated by the 0.35 μm CMOS RF technology, the result shows that the open-loop gain of the op-amp is 118 dB with the unity gain-bandwidth (UGBW) of 1 GHz, and the phase margin is 61°while the settling time is 5.8 ns when achieving 0.01% accuracy. The op-amp is especially suitable for the front-end sample/hold (S/H) cell and the multiplying D/A converter (MDAC) module of the high-speed high-resolution pipelined A/D converters (AVCs).
基金Supported by the National Basic Research Program of China ("973" Projects) (Grant Nos.1998020319 and 2004CB217906)
文摘In this paper,an introduction to the bifurcation theory and its applicability to the study of sub-synchronous resonance (SSR) phenomenon in power system are presented. The continuation and bifurcation analysis software AUTO97 is adopted to investigate SSR for a single-machine-infinite-bus power system with series capacitor compensation. The investigation results show that SSR is the result of unstable limit cycle after bifurcation. When the system exhibits SSR, some complex periodical orbit bifurcations, such as torus bifurcation and periodical fold bifurcation, may happen with the variation of limit cycle. Furthermore, the initial operation condition may greatly influence the ultimate state of the system. The time-domain simulation is carried out to verify the effectiveness of the results obtained from the bifurcation analysis.