with the constant popularity of the precast assembly gasification, the application of the composite section beam which can change into different sections is wilder. This passage, based on the hypothesis that the inter...with the constant popularity of the precast assembly gasification, the application of the composite section beam which can change into different sections is wilder. This passage, based on the hypothesis that the interface is smooth, simplify the double composite section beam and deduce the anchorage-bolt-shear and composite-section-beam-bending-capacity formulas when there is a slip on the interface in elastic stage. Moreover, it contains some prospect and summarizes of the later research.展开更多
Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(C...Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(CNTs)1/4) is synthesized using a facile hydrothermal process and a following direct heat- treatment in the air. The morphology and composition of this catalyst are analyzed using scanning elec- tronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The morphology characteristics reveal that flower-like Fe2O3 parti- cles are highly dispersed on both MnO2 nanotubes and CNT surfaces, coupling all three components firmly. Electrochemical measurements indicate that the synergy of catalyst exhibit superior bi- functional catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as stability than Pt/C and lrO2 catalysts. Using these catalysts for air-cathodes, both primary and rechargeable zinc-air batteries (ZABs) are assembled for performance validation. In a primary ZAB, this 3D-clamed catalyst shows a decent open circuit voltage (OCV, -1.48 V) and a high discharge peak power density (349 mW cm 2), corresponding to a coulomhic efficiency of 92%. In a rechargeahle ZABs with this bifunctional catalyst, high OCV (〉1.3 V) and small charge-discharge voltage gap (〈1.1 V) are achieved along with high specific capacity (780 mAh g 1 at 30 mA cm-2) and robust cycle-life (1,390 cycles at cycle profile of 20 mA/10 min).展开更多
文摘with the constant popularity of the precast assembly gasification, the application of the composite section beam which can change into different sections is wilder. This passage, based on the hypothesis that the interface is smooth, simplify the double composite section beam and deduce the anchorage-bolt-shear and composite-section-beam-bending-capacity formulas when there is a slip on the interface in elastic stage. Moreover, it contains some prospect and summarizes of the later research.
基金supported by the National Natural Science Foundation of China(U1510120)Natural Science Foundation of Shanghai(14ZR1400700)+2 种基金the Project of Introducing Overseas Intelligence High Education of China(2017-2018)the Graduate Thesis Innovation Foundation of Donghua University(EG2017031,EG2016034)the College of Environmental Science and Engineering,State Environmental Protection Engineering Centre for Pollution Treatment and Control in Textile Industry,Donghua University
文摘Novel and highly durable air cathode electrocatalyst with three dimensional (3D)-clam-shaped structure, MnO2 nanotubes-supported Fe2O3 (Fe2O3/MnO2) composited by carbon nanotubes (CNTs) ((Fe2O3/ MnO2)3/4-(CNTs)1/4) is synthesized using a facile hydrothermal process and a following direct heat- treatment in the air. The morphology and composition of this catalyst are analyzed using scanning elec- tronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The morphology characteristics reveal that flower-like Fe2O3 parti- cles are highly dispersed on both MnO2 nanotubes and CNT surfaces, coupling all three components firmly. Electrochemical measurements indicate that the synergy of catalyst exhibit superior bi- functional catalytic activity for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) as well as stability than Pt/C and lrO2 catalysts. Using these catalysts for air-cathodes, both primary and rechargeable zinc-air batteries (ZABs) are assembled for performance validation. In a primary ZAB, this 3D-clamed catalyst shows a decent open circuit voltage (OCV, -1.48 V) and a high discharge peak power density (349 mW cm 2), corresponding to a coulomhic efficiency of 92%. In a rechargeahle ZABs with this bifunctional catalyst, high OCV (〉1.3 V) and small charge-discharge voltage gap (〈1.1 V) are achieved along with high specific capacity (780 mAh g 1 at 30 mA cm-2) and robust cycle-life (1,390 cycles at cycle profile of 20 mA/10 min).