China experienced worsening ground-level ozone(O_(2)) pollution from 2013 to 2019. In this study, meteorological parameters, including surface temperature(T_(2)), solar radiation(SW), and wind speed(WS), were classifi...China experienced worsening ground-level ozone(O_(2)) pollution from 2013 to 2019. In this study, meteorological parameters, including surface temperature(T_(2)), solar radiation(SW), and wind speed(WS), were classified into two aspects,(1) Photochemical Reaction Condition(PRC = T_(2)× SW) and(2) Physical Dispersion Capacity(PDC = WS). In this way, a Meteorology Synthetic Index(MSI = PRC/PDC) was developed for the quantification of meteorology-induced ground-level O_(2)pollution. The positive linear relationship between the 90 th percentile of MDA8(maximum daily 8-h average) O_(2)concentration and MSI determined that the contribution of meteorological changes to ground-level O-3 varied on a latitudinal gradient, decreasing from ~40% in southern China to 10%–20% in northern China. Favorable photochemical reaction conditions were more important for ground-level O_(2)pollution. This study proposes a universally applicable index for fast diagnosis of meteorological roles in ground-level O_(2)variability, which enables the assessment of the observed effects of precursor emissions reductions that can be used for designing future control policies.展开更多
The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined wi...The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.展开更多
A series of supported CeO2/TiO2 catalysts were prepared to explore the influence of CeO2 loading on these catalysts for the selective catalytic reduction of NO3 by NH3(NH3-SCR).The catalysts were investigated in detai...A series of supported CeO2/TiO2 catalysts were prepared to explore the influence of CeO2 loading on these catalysts for the selective catalytic reduction of NO3 by NH3(NH3-SCR).The catalysts were investigated in detail by means of XRD,Raman,H2-TPR,NH3-TPD,XPS,in situ DRIFTS,and NH3-SCR reaction.The activity of the catalyst is closely related to the content of CeO2.When the loading of CeO2 is near the dispersion capacity(1.16 mmol Ce4+/100 m^2 TiO2),the catalytic activity is better.This may be because that the dispersed CeO2 is the active species and the catalyst has appropriate redox property,along with the larger amounts of surface Ce content and surface adsorbed oxygen species.Finally,a possible reaction mechanism via the Langmuir-Hinshelwood(L-H)mechanism is tentatively proposed to further understand the NH3-SCR reaction.展开更多
基金supported by the National Key Research and Development Plan(Grant No.2017YFC0210105)the second Tibetan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0604)+7 种基金the National Natural Science Foundation of China(Grant Nos.41905086,41905107,42077205,and 41425020)the Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(Grant No.2019B121205004)the China Postdoctoral Science Foundation(Grant No.2020M683174)the Air Quip(High-resolution Air Quality Information for Policy)Project funded by the Research Council of Norwaythe Collaborative Innovation Center of Climate ChangeJiangsu ProvinceChinathe high-performance computing platform of Jinan University。
文摘China experienced worsening ground-level ozone(O_(2)) pollution from 2013 to 2019. In this study, meteorological parameters, including surface temperature(T_(2)), solar radiation(SW), and wind speed(WS), were classified into two aspects,(1) Photochemical Reaction Condition(PRC = T_(2)× SW) and(2) Physical Dispersion Capacity(PDC = WS). In this way, a Meteorology Synthetic Index(MSI = PRC/PDC) was developed for the quantification of meteorology-induced ground-level O_(2)pollution. The positive linear relationship between the 90 th percentile of MDA8(maximum daily 8-h average) O_(2)concentration and MSI determined that the contribution of meteorological changes to ground-level O-3 varied on a latitudinal gradient, decreasing from ~40% in southern China to 10%–20% in northern China. Favorable photochemical reaction conditions were more important for ground-level O_(2)pollution. This study proposes a universally applicable index for fast diagnosis of meteorological roles in ground-level O_(2)variability, which enables the assessment of the observed effects of precursor emissions reductions that can be used for designing future control policies.
基金supported by the National Natural Foundation of China(21607019,21503115)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control(OVEC013)the Talent Introduction Project of Chongqing Three Gorges University~~
文摘The influence of tungsten trioxide(WO3)loading on the selective catalytic reduction(SCR)of nitric oxide(NO)by ammonia(NH3)over WO3/cerium dioxide(CeO2)was investigated.The NO conversion first rose and then declined with increasing WO3loading.It was found that the crystalline WO3in the1.6WO3/CeO2sample could be removed in25wt%ammonium hydroxide at70°C,which improved the catalytic activity of the sample.The obtained samples were characterized by X‐ray diffraction,Raman spectroscopy,X‐ray photoelectron spectroscopy,hydrogen(H2)temperature programmed reduction,NH3temperature programmed desorption,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The results revealed that the dispersed WO3promoted the catalytic activity of WO3/CeO2while the crystalline WO3inhibited catalytic activity.The oxygen activation of CeO2was inhibited by the coverage of WO3,which weakened NO oxidation and adsorption of nitrate species over WO3/CeO2.In addition,the NH3adsorption performance on CeO2was improved by modification with WO3.NH3was the most stable adsorbed species under NH3SCR reaction conditions.In situ DRIFT spectra suggested that the NH3SCR reaction proceeded via the Eley‐Rideal mechanism over WO3/CeO2.Thus,when the loading of WO3was close to the dispersion capacity,the effects of NH3adsorption and activation were maximized to promote the reaction via the Eley‐Rideal route.
基金Project supported by the National Natural Science Foundation of China(21773106,21677069,51674002,21307001)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control(OVEC037)。
文摘A series of supported CeO2/TiO2 catalysts were prepared to explore the influence of CeO2 loading on these catalysts for the selective catalytic reduction of NO3 by NH3(NH3-SCR).The catalysts were investigated in detail by means of XRD,Raman,H2-TPR,NH3-TPD,XPS,in situ DRIFTS,and NH3-SCR reaction.The activity of the catalyst is closely related to the content of CeO2.When the loading of CeO2 is near the dispersion capacity(1.16 mmol Ce4+/100 m^2 TiO2),the catalytic activity is better.This may be because that the dispersed CeO2 is the active species and the catalyst has appropriate redox property,along with the larger amounts of surface Ce content and surface adsorbed oxygen species.Finally,a possible reaction mechanism via the Langmuir-Hinshelwood(L-H)mechanism is tentatively proposed to further understand the NH3-SCR reaction.