The formation and maintenance of the innovation capacity of our textile industry does not only have to do with the sustainable development of textile industry itself,but also directly decides the international competi...The formation and maintenance of the innovation capacity of our textile industry does not only have to do with the sustainable development of textile industry itself,but also directly decides the international competition展开更多
Purpose: The oil and gas gathering and processing facility of Kuwait Oil Company is built with a nameplate capacity of X MBOPD (thousand barrels oil per day) with 50% water cut. However, the facility was operating ...Purpose: The oil and gas gathering and processing facility of Kuwait Oil Company is built with a nameplate capacity of X MBOPD (thousand barrels oil per day) with 50% water cut. However, the facility was operating with a water cut of 35%. This comprehensive technical study was conducted to evaluate possibility of increasing oil processing capacity of this facility in line with current lower water cut and other operational flexibilities available in the facility without utilizing its design margin. Topic: This paper shares an innovative approach to increase name plate capacity of oil and gas processing facility utilizing available operational flexibility and operational margins with minor modification. It shares a case study where facility capacity is increased by around 19% without utilizing design margins of equipment or pipeline. Method: The study includes theoretical verification and analysis of all major equipment and piping to identify available capacity and limitation, in order to utilize available additional margin and to propose debottleneck options to overcome limitations. Achievement: The study confirmed that, facility name plate capacity can be revised from X MBOPD (with 50% w.c (water cut)) to X + 32 MBOPD (with: 45% w.c) minor modification in separator and utilizing margin available in feed specification ofdesalter trains.展开更多
This paper analyzes the current situation of college teachers’teaching organization ability based on teaching implementation by using the literature method and inductive deduction method,and summarizes the factors af...This paper analyzes the current situation of college teachers’teaching organization ability based on teaching implementation by using the literature method and inductive deduction method,and summarizes the factors affecting the teaching ability of college public physical education teachers,in order to provide references for the improvement of the teaching effect of college physical education,and help the implementation of the national strategy of healthy China and sports power.The teaching implementation of physical education teachers in colleges and universities is mainly affected by the drafting of teaching objectives,teaching design,teaching evaluation,and other factors.The teaching workload makes teachers tired of teaching preparation,teaching design fails to think deeply about the major and learning situation,teaching evaluation method is single,and other phenomena.In view of the problems in the implementation of the curriculum,it is proposed to participate in education and teaching training to update the educational concept,regularly carry out teaching and research activities to improve the teaching organization ability,and write teaching logs to improve the ability of sustainable development.展开更多
Metamaterial absorbers(MAs)serve as important electromagnetic wave-absorbing devices that have captured the attention of researchers for a long term.Functioning as sensitive detectors to determine perturbations in an ...Metamaterial absorbers(MAs)serve as important electromagnetic wave-absorbing devices that have captured the attention of researchers for a long term.Functioning as sensitive detectors to determine perturbations in an ambient environment is another significant subsidiary function.Here,we theoretically propose an optimized fabrication method to implement terahertz MAs with fewer steps and also evaluate both absorption and sensing performances of such MAs realized by the new method.Simulation findings demonstrate that such MAs can basically maintain the original absorption features perfectly,including near-complete absorption at resonance as well as strong robustness to wide incident angles.Specifically,the full width at half-maximum and quality factor of the absorption resonances attenuate less than 26%and 8%with this new method,remaining in the ranges of^0.03–0.04 THz and^20–27 for two selected example MAs.More significantly,sensing capacities of this type of MA,in terms of maximum detection range(enhancing at least 9%),observable spectral modulation(increasing at least 6.3%),and refractive index sensitivity,are improved to a large extent because of more intense coupling between resonant field and matter in the case of surface-relief MAs.This stronger coupling results from exposing more spots of the resonantly high field to direct contact with an approaching analyte,which is illustrated by field profiles of the MAs at resonance in this work.Additionally,other desirable absorber features are also explored with such MAs,like functioning as building blocks to configure multiband MAs and strong robustness against fabrication errors.Such new-style terahertz MAs shown in the paper,acting as good examples,not only prove that terahertz MAs can be fabricated by the proposed time-and cost-saving route in contrast to the traditional MA fabrication process,but also can serve as novel platforms to explore other intriguing terahertz photonic effects,such as the field enhancement effect.展开更多
The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, i...The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, identify the primary cause of bottlenecks formation and take measures mitigating the impact of bottlenecks on the airport terminal operation. Many studies dealing with the problems of airport landside capacity are focused mainly on the processing part of the airport terminal and consider the airport terminal to be an isolated system. Even the most of models of airport landside operations developed using various simulation (both generic and dedicated) software packages (e.g., PaxSim, SLAM, WITNESS, ARENA or EXTEND) are designed for simulating the passenger and baggage flows only between curb-side and apron. Although this approach provides valuable data concerning capacity, delays or processing bottlenecks, in some cases identified capacity constraints are only the symptoms of the actual problem. In order to discover the cause of the problem, it is necessary to consider the airport terminal as an integral part of much more complex regional, national or international transportation system. This article reflects the above mentioned requirements and introduces an innovative approach to passenger and baggage flow simulation based on the fact that airport terminal is considered as an integral part of air passenger door-to-door transportation process.展开更多
The efficiency of activated biochar fibres obtained from Opuntia Ficus lndica regarding me sorpuon oi trlvalent samarium (Sm(Ⅲ)) from aqueous solutions was investigated by batch experiments. The effect of various...The efficiency of activated biochar fibres obtained from Opuntia Ficus lndica regarding me sorpuon oi trlvalent samarium (Sm(Ⅲ)) from aqueous solutions was investigated by batch experiments. The effect of various physicochemical parameters (e.g. pH, initial metal concentration, ionic strength, temperature and contact time) on the Sm(III) adsorption was studied and the surface species were characterized by FTIR spectroscopy prior to and after the lanthanide sorption. The experimental results showed that the acti- vated biochar fibres possessed extraordinary sorption capacity for Sm(Ⅲ) in acidic solutions (qmax=90 g/kg, pH 3.0) and near neutral solutions (qmax=350 g/kg, pH 6.5), This was attributed to the formation of samarium complexes with the surface carboxylic moieties, available in high density on the lamellar structures of the bio-sorbent.展开更多
文摘The formation and maintenance of the innovation capacity of our textile industry does not only have to do with the sustainable development of textile industry itself,but also directly decides the international competition
文摘Purpose: The oil and gas gathering and processing facility of Kuwait Oil Company is built with a nameplate capacity of X MBOPD (thousand barrels oil per day) with 50% water cut. However, the facility was operating with a water cut of 35%. This comprehensive technical study was conducted to evaluate possibility of increasing oil processing capacity of this facility in line with current lower water cut and other operational flexibilities available in the facility without utilizing its design margin. Topic: This paper shares an innovative approach to increase name plate capacity of oil and gas processing facility utilizing available operational flexibility and operational margins with minor modification. It shares a case study where facility capacity is increased by around 19% without utilizing design margins of equipment or pipeline. Method: The study includes theoretical verification and analysis of all major equipment and piping to identify available capacity and limitation, in order to utilize available additional margin and to propose debottleneck options to overcome limitations. Achievement: The study confirmed that, facility name plate capacity can be revised from X MBOPD (with 50% w.c (water cut)) to X + 32 MBOPD (with: 45% w.c) minor modification in separator and utilizing margin available in feed specification ofdesalter trains.
基金Teaching reform project of Chongqing Three Gorges University(Project number:JGZC2111).
文摘This paper analyzes the current situation of college teachers’teaching organization ability based on teaching implementation by using the literature method and inductive deduction method,and summarizes the factors affecting the teaching ability of college public physical education teachers,in order to provide references for the improvement of the teaching effect of college physical education,and help the implementation of the national strategy of healthy China and sports power.The teaching implementation of physical education teachers in colleges and universities is mainly affected by the drafting of teaching objectives,teaching design,teaching evaluation,and other factors.The teaching workload makes teachers tired of teaching preparation,teaching design fails to think deeply about the major and learning situation,teaching evaluation method is single,and other phenomena.In view of the problems in the implementation of the curriculum,it is proposed to participate in education and teaching training to update the educational concept,regularly carry out teaching and research activities to improve the teaching organization ability,and write teaching logs to improve the ability of sustainable development.
基金National Natural Science Foundation of China(61620106014,61827818,61805010)Natural Science Foundation of Beijing Municipality(4192048)。
文摘Metamaterial absorbers(MAs)serve as important electromagnetic wave-absorbing devices that have captured the attention of researchers for a long term.Functioning as sensitive detectors to determine perturbations in an ambient environment is another significant subsidiary function.Here,we theoretically propose an optimized fabrication method to implement terahertz MAs with fewer steps and also evaluate both absorption and sensing performances of such MAs realized by the new method.Simulation findings demonstrate that such MAs can basically maintain the original absorption features perfectly,including near-complete absorption at resonance as well as strong robustness to wide incident angles.Specifically,the full width at half-maximum and quality factor of the absorption resonances attenuate less than 26%and 8%with this new method,remaining in the ranges of^0.03–0.04 THz and^20–27 for two selected example MAs.More significantly,sensing capacities of this type of MA,in terms of maximum detection range(enhancing at least 9%),observable spectral modulation(increasing at least 6.3%),and refractive index sensitivity,are improved to a large extent because of more intense coupling between resonant field and matter in the case of surface-relief MAs.This stronger coupling results from exposing more spots of the resonantly high field to direct contact with an approaching analyte,which is illustrated by field profiles of the MAs at resonance in this work.Additionally,other desirable absorber features are also explored with such MAs,like functioning as building blocks to configure multiband MAs and strong robustness against fabrication errors.Such new-style terahertz MAs shown in the paper,acting as good examples,not only prove that terahertz MAs can be fabricated by the proposed time-and cost-saving route in contrast to the traditional MA fabrication process,but also can serve as novel platforms to explore other intriguing terahertz photonic effects,such as the field enhancement effect.
文摘The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, identify the primary cause of bottlenecks formation and take measures mitigating the impact of bottlenecks on the airport terminal operation. Many studies dealing with the problems of airport landside capacity are focused mainly on the processing part of the airport terminal and consider the airport terminal to be an isolated system. Even the most of models of airport landside operations developed using various simulation (both generic and dedicated) software packages (e.g., PaxSim, SLAM, WITNESS, ARENA or EXTEND) are designed for simulating the passenger and baggage flows only between curb-side and apron. Although this approach provides valuable data concerning capacity, delays or processing bottlenecks, in some cases identified capacity constraints are only the symptoms of the actual problem. In order to discover the cause of the problem, it is necessary to consider the airport terminal as an integral part of much more complex regional, national or international transportation system. This article reflects the above mentioned requirements and introduces an innovative approach to passenger and baggage flow simulation based on the fact that airport terminal is considered as an integral part of air passenger door-to-door transportation process.
文摘The efficiency of activated biochar fibres obtained from Opuntia Ficus lndica regarding me sorpuon oi trlvalent samarium (Sm(Ⅲ)) from aqueous solutions was investigated by batch experiments. The effect of various physicochemical parameters (e.g. pH, initial metal concentration, ionic strength, temperature and contact time) on the Sm(III) adsorption was studied and the surface species were characterized by FTIR spectroscopy prior to and after the lanthanide sorption. The experimental results showed that the acti- vated biochar fibres possessed extraordinary sorption capacity for Sm(Ⅲ) in acidic solutions (qmax=90 g/kg, pH 3.0) and near neutral solutions (qmax=350 g/kg, pH 6.5), This was attributed to the formation of samarium complexes with the surface carboxylic moieties, available in high density on the lamellar structures of the bio-sorbent.