As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ...As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.展开更多
The integrated energy system(IES)is an important energy supply method for mitigating the energy crisis.A station-and-network–coordinated planning method for the IES,which considers the integrated demand responses(IDR...The integrated energy system(IES)is an important energy supply method for mitigating the energy crisis.A station-and-network–coordinated planning method for the IES,which considers the integrated demand responses(IDRs)of flexible loads,electric vehicles,and energy storage is proposed in this work.First,based on load substitution at the user side,an energy-station model considering the IDR is established.Then,based on the characteristics of the energy network,a collaborative planning model is established for the energy station and energy network of the IES,considering the comprehensive system investment,operation and maintenance,and clean energy shortage penalty costs,to minimize the total cost.This can help optimize the locations of the power lines and natural gas pipelines and the capacities of the equipment in an energy station.Finally,simulations are performed to demonstrate that the proposed planning method can help delay or reduce the construction of new lines and energy-station equipment,thereby reducing the investment required and improving the planning economics of the IES.展开更多
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.
基金supported in part by the National Key R&D Program of China(2018YFB0905000)the Science and Technology Project of the State Grid Corporation of China(SGTJDK00DWJS1800232)
文摘The integrated energy system(IES)is an important energy supply method for mitigating the energy crisis.A station-and-network–coordinated planning method for the IES,which considers the integrated demand responses(IDRs)of flexible loads,electric vehicles,and energy storage is proposed in this work.First,based on load substitution at the user side,an energy-station model considering the IDR is established.Then,based on the characteristics of the energy network,a collaborative planning model is established for the energy station and energy network of the IES,considering the comprehensive system investment,operation and maintenance,and clean energy shortage penalty costs,to minimize the total cost.This can help optimize the locations of the power lines and natural gas pipelines and the capacities of the equipment in an energy station.Finally,simulations are performed to demonstrate that the proposed planning method can help delay or reduce the construction of new lines and energy-station equipment,thereby reducing the investment required and improving the planning economics of the IES.