期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Meniscus behaviors and capillary pressures in capillary channels having various cross-sectional geometries 被引量:1
1
作者 Yicun Tang Jingchun Min +1 位作者 Xuan Zhang Guiling Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第10期2014-2022,共9页
A numerical study has been conducted to simulate the liquid/gas interface(meniscus) behaviors and capillary pressures in various capillary channels using the volume of fluid(VOF) method. Calculations are performed for... A numerical study has been conducted to simulate the liquid/gas interface(meniscus) behaviors and capillary pressures in various capillary channels using the volume of fluid(VOF) method. Calculations are performed for four channels whose cross-sectional shapes are circle, regular hexagon, square and equilateral triangle and for four solid/liquid contact angles of 30°, 60°, 120° and 150°. No calculation is needed for the contact angle of 90° because the liquid/gas interface in this case can be thought to be a plane surface. In the calculations, the liquid/gas interface in each channel is assumed to have a flat surface at the initial time, it changes towards its due shape thereafter, which is induced by the combined action of the surface tension and contact angle. After experiencing a period of damped oscillation, it stabilizes at a certain geometry. The interface dynamics and capillary pressures are compared among different channels under three categories including the equal inscribed circle radius, equal area, and equal circumscribed circle radius. The capillary pressure in the circular channel obtained from the simulation agrees well with that given by the Young–Laplace equation, supporting the reliability of the numerical model. The channels with equal inscribed circle radius yield the closest capillary pressures, while those with equal circumscribed circle radius give the most scattered capillary pressures,with those with equal area living in between. A correlation is developed to calculate the equivalent radius of a polygonal channel, which can be used to compute the capillary pressure in such a channel by combination with the Young–Laplace equation. 展开更多
关键词 capillary phenomenon Polygonal channel Meniscus shape capillary pressure
下载PDF
High loading carbon nanotubes deposited onto porous nickel yarns by solution imbibition as flexible wire-shaped supercapacitor electrodes 被引量:1
2
作者 Chaoqun Kang Dashun Cao +5 位作者 Yuejiao Liu Zhiwei Liu Ruiqing Liu Xiaomiao Feng Dan Wang Yanwen Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期836-842,共7页
The deposition of active materials directly onto metal wires is a general strategy to prepare wire-shaped electrodes for flexible and wearable energy storage devices. However, it is still a critical challenge to coat ... The deposition of active materials directly onto metal wires is a general strategy to prepare wire-shaped electrodes for flexible and wearable energy storage devices. However, it is still a critical challenge to coat active materials onto the aimed metal wires because of their smooth surface and small specific surface area. In this work, high porous nickel yarns(PNYs) was fabricated using commercial nylon yarns as templates through step-wise electroless plating, electroplating and calcination processes. The PNYs are composed of multiplied fibers with hollow tubular structure of 5–10 μm in diameter, allowing the imbibition of carbon nanotubes(CNTs) solution by a facile capillary action process. The prepared CNTs/PNY electrodes showed a typical electrochemical double layer capacitive performance and the constructed allsolid flexible wire-shaped symmetric supercapacitors provided a specific capacitance of 4.67 F/cm3 with good cycling stability at a current density of 0.6 A/cm3. 展开更多
关键词 Porous-yarn Flexible supercapacitor Adsorption phenomenon capillary action Wire-shaped electrode
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部