期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Liquid waveguide capillary cell for the spectrophotometric determination of nanomolar iodate concentrations in marine waters
1
作者 Jianrong Lin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第3期103-108,共6页
A new spectrophotometric method based on a liquid waveguide capillary cell for an enhanced detection was developed to measure nanomolar iodate concentrations.This method has a detection limit and precision of 1-2 nmol... A new spectrophotometric method based on a liquid waveguide capillary cell for an enhanced detection was developed to measure nanomolar iodate concentrations.This method has a detection limit and precision of 1-2 nmol/L,which is equivalent to 10%that of conventional methods,a recovery of 97.7%-104.0%,and a working range of 10-120 nmol/L.Water samples were collected from three estuaries and one coastal ocean for testing,and the proposed technique detected as low as 11 nmol/L and 18 nmol/L iodate in these samples.This newly developed method is helpful in understanding the biogeochemical cycle of iodine in nature. 展开更多
关键词 IODATE liquid waveguide capillary cell spectrophotometric determination
下载PDF
Radial density profile and stability of capillary discharge plasma waveguides of lengths up to 40 cm
2
作者 M.Turner A.J.Gonsalves +10 位作者 S.S.Bulanov C.Benedetti N.A.Bobrova V.A.Gasilov P.V.Sasorov G.Korn K.Nakamura J.van Tilborg C.G.Geddes C.B.Schroeder E.Esarey 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2021年第2期31-40,共10页
We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650µm to 2 mm and lengths of 9 to 40 cm.To the best of the authors’knowledge,40 c... We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650µm to 2 mm and lengths of 9 to 40 cm.To the best of the authors’knowledge,40 cm is the longest discharge capillary plasma waveguide to date.This length is important for≥10 GeV electron energy gain in a single laser-driven plasma wakefield acceleration stage.Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to<0.2%and their average on-axis plasma electron density to<1%.These variations explain only a small fraction of laser-driven plasma wakefield acceleration electron bunch variations observed in experiments to date.Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and is in excellent agreement with magnetohydrodynamic simulation results.We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel.However,they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size. 展开更多
关键词 capillary plasma waveguide laser-driven plasma wakefield acceleration plasma telescope matched laser guiding
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部