Small amount of lauroyl glutamine was incorporated into HVI 350 mineral lubricating oil and the biodegradabilities of neat oil and the formulated oil in soils were evaluated. Thereafter, the biodegradation rate equati...Small amount of lauroyl glutamine was incorporated into HVI 350 mineral lubricating oil and the biodegradabilities of neat oil and the formulated oil in soils were evaluated. Thereafter, the biodegradation rate equations for the two lubricating oils were simulated based on the exponential model. The results indicated that lauroyl glutamine effectively promoted biodegradation of HVI 350 mineral lubricating oil. Under given test conditions, the exponential model well fitted the biodegradation of lubricating oils in soils. The biodegradation rate equation for HVI 350 mineral lubricating oil can be described as ln(St/S0) = –0.0155t, while that for the oil formulated with lauroyl glutamine as ln(St/S0) = –0.0235t. The biodegradation half-lives of neat oil and the formulated oils were 44.72 days and 29.50 days, respectively.展开更多
Compared with traditional surfactant-stabilised emulsions, Pickering emulsions, stabilised by clay nanoparticles, have the advantages of strong interface stability, strong versatility, and low toxicity. Moreover, they...Compared with traditional surfactant-stabilised emulsions, Pickering emulsions, stabilised by clay nanoparticles, have the advantages of strong interface stability, strong versatility, and low toxicity. Moreover, they have excellent application potential in the fields of food and medicine. In this study, a food-grade Pickering emulsion stabiliser was prepared by physically adsorbing the cationic surfactant ethyl lauroyl arginate (LAE) on the surface of nano-montmorillonite (NMMT). Different LAE/NMMT combinations were assessed for their capacity to stabilise an oil-in-water emulsion at a low solid concentration (0.5%, w/v). The controllability of the droplet diameter and stability of the Pickering emulsions can be realised by changing the content of LAE. Scanning electron microscopy (SEM), and laser confocal microscopy (CLSM) confirmed the successful preparation of sunflower oil Pickering emulsion droplets stabilised by LAE/NMMT (0.0075%/1%). Additionally, the LAE/NMMT studied in this work could be used as a highly effective antibacterial surfactant with inorganic nanoparticles to efficiently stabilise Pickering emulsions, thus expanding the potential of preparing edible Pickering emulsion formulae.展开更多
文摘Small amount of lauroyl glutamine was incorporated into HVI 350 mineral lubricating oil and the biodegradabilities of neat oil and the formulated oil in soils were evaluated. Thereafter, the biodegradation rate equations for the two lubricating oils were simulated based on the exponential model. The results indicated that lauroyl glutamine effectively promoted biodegradation of HVI 350 mineral lubricating oil. Under given test conditions, the exponential model well fitted the biodegradation of lubricating oils in soils. The biodegradation rate equation for HVI 350 mineral lubricating oil can be described as ln(St/S0) = –0.0155t, while that for the oil formulated with lauroyl glutamine as ln(St/S0) = –0.0235t. The biodegradation half-lives of neat oil and the formulated oils were 44.72 days and 29.50 days, respectively.
文摘Compared with traditional surfactant-stabilised emulsions, Pickering emulsions, stabilised by clay nanoparticles, have the advantages of strong interface stability, strong versatility, and low toxicity. Moreover, they have excellent application potential in the fields of food and medicine. In this study, a food-grade Pickering emulsion stabiliser was prepared by physically adsorbing the cationic surfactant ethyl lauroyl arginate (LAE) on the surface of nano-montmorillonite (NMMT). Different LAE/NMMT combinations were assessed for their capacity to stabilise an oil-in-water emulsion at a low solid concentration (0.5%, w/v). The controllability of the droplet diameter and stability of the Pickering emulsions can be realised by changing the content of LAE. Scanning electron microscopy (SEM), and laser confocal microscopy (CLSM) confirmed the successful preparation of sunflower oil Pickering emulsion droplets stabilised by LAE/NMMT (0.0075%/1%). Additionally, the LAE/NMMT studied in this work could be used as a highly effective antibacterial surfactant with inorganic nanoparticles to efficiently stabilise Pickering emulsions, thus expanding the potential of preparing edible Pickering emulsion formulae.