Currently,the video captioning models based on an encoder-decoder mainly rely on a single video input source.The contents of video captioning are limited since few studies employed external corpus information to guide...Currently,the video captioning models based on an encoder-decoder mainly rely on a single video input source.The contents of video captioning are limited since few studies employed external corpus information to guide the generation of video captioning,which is not conducive to the accurate descrip-tion and understanding of video content.To address this issue,a novel video captioning method guided by a sentence retrieval generation network(ED-SRG)is proposed in this paper.First,a ResNeXt network model,an efficient convolutional network for online video understanding(ECO)model,and a long short-term memory(LSTM)network model are integrated to construct an encoder-decoder,which is utilized to extract the 2D features,3D features,and object features of video data respectively.These features are decoded to generate textual sentences that conform to video content for sentence retrieval.Then,a sentence-transformer network model is employed to retrieve different sentences in an external corpus that are semantically similar to the above textual sentences.The candidate sentences are screened out through similarity measurement.Finally,a novel GPT-2 network model is constructed based on GPT-2 network structure.The model introduces a designed random selector to randomly select predicted words with a high probability in the corpus,which is used to guide and generate textual sentences that are more in line with human natural language expressions.The proposed method in this paper is compared with several existing works by experiments.The results show that the indicators BLEU-4,CIDEr,ROUGE_L,and METEOR are improved by 3.1%,1.3%,0.3%,and 1.5%on a public dataset MSVD and 1.3%,0.5%,0.2%,1.9%on a public dataset MSR-VTT respectively.It can be seen that the proposed method in this paper can generate video captioning with richer semantics than several state-of-the-art approaches.展开更多
针对基于集合预测的密集视频描述方法由于缺乏显式的事件间特征交互且未针对事件间差异训练模型而导致的模型重复预测事件或生成语句雷同问题,提出一种基于事件最大边界的密集视频描述(dense video captioning based on event maximal m...针对基于集合预测的密集视频描述方法由于缺乏显式的事件间特征交互且未针对事件间差异训练模型而导致的模型重复预测事件或生成语句雷同问题,提出一种基于事件最大边界的密集视频描述(dense video captioning based on event maximal margin,EMM-DVC)方法。事件边界是包含事件间特征相似度、事件在视频中时间位置的距离、生成描述多样性的评分。EMM-DVC通过最大化事件边界,使相似预测结果的距离远且预测结果和实际事件的距离近。另外,EMM-DVC引入事件边界距离损失函数,通过扩大事件边界距离,引导模型关注不同事件。在ActivityNet Captions数据集上的实验证明,EMM-DVC与同类密集视频描述模型相比能生成更具多样性的描述文本,并且与主流密集视频描述模型相比,EMM-DVC在多个指标上达到最优水平。展开更多
基金supported in part by the National Natural Science Foundation of China under Grants 62273272 and 61873277in part by the Chinese Postdoctoral Science Foundation under Grant 2020M673446+1 种基金in part by the Key Research and Development Program of Shaanxi Province under Grant 2023-YBGY-243in part by the Youth Innovation Team of Shaanxi Universities.
文摘Currently,the video captioning models based on an encoder-decoder mainly rely on a single video input source.The contents of video captioning are limited since few studies employed external corpus information to guide the generation of video captioning,which is not conducive to the accurate descrip-tion and understanding of video content.To address this issue,a novel video captioning method guided by a sentence retrieval generation network(ED-SRG)is proposed in this paper.First,a ResNeXt network model,an efficient convolutional network for online video understanding(ECO)model,and a long short-term memory(LSTM)network model are integrated to construct an encoder-decoder,which is utilized to extract the 2D features,3D features,and object features of video data respectively.These features are decoded to generate textual sentences that conform to video content for sentence retrieval.Then,a sentence-transformer network model is employed to retrieve different sentences in an external corpus that are semantically similar to the above textual sentences.The candidate sentences are screened out through similarity measurement.Finally,a novel GPT-2 network model is constructed based on GPT-2 network structure.The model introduces a designed random selector to randomly select predicted words with a high probability in the corpus,which is used to guide and generate textual sentences that are more in line with human natural language expressions.The proposed method in this paper is compared with several existing works by experiments.The results show that the indicators BLEU-4,CIDEr,ROUGE_L,and METEOR are improved by 3.1%,1.3%,0.3%,and 1.5%on a public dataset MSVD and 1.3%,0.5%,0.2%,1.9%on a public dataset MSR-VTT respectively.It can be seen that the proposed method in this paper can generate video captioning with richer semantics than several state-of-the-art approaches.
文摘针对基于集合预测的密集视频描述方法由于缺乏显式的事件间特征交互且未针对事件间差异训练模型而导致的模型重复预测事件或生成语句雷同问题,提出一种基于事件最大边界的密集视频描述(dense video captioning based on event maximal margin,EMM-DVC)方法。事件边界是包含事件间特征相似度、事件在视频中时间位置的距离、生成描述多样性的评分。EMM-DVC通过最大化事件边界,使相似预测结果的距离远且预测结果和实际事件的距离近。另外,EMM-DVC引入事件边界距离损失函数,通过扩大事件边界距离,引导模型关注不同事件。在ActivityNet Captions数据集上的实验证明,EMM-DVC与同类密集视频描述模型相比能生成更具多样性的描述文本,并且与主流密集视频描述模型相比,EMM-DVC在多个指标上达到最优水平。