In this article,we evaluated the energy performance parameters and gas emissions to identify which of the stoves studied performs best,and the biomass char briquettes with less emission.Biomass char briquettes from pe...In this article,we evaluated the energy performance parameters and gas emissions to identify which of the stoves studied performs best,and the biomass char briquettes with less emission.Biomass char briquettes from peanut shells,cashew nut shells,and corn cobs were produced using wheat flour as a binder.The binder rate was set at 9%and 10%.Based on the energy performance parameters,it was highlighted that the char briquette from corn cob with 9%binder(Char_CC_9%)has the best energy performance,followed by the char briquette from peanut shells with 9%binder(Char_PNS_9%),and lastly,the char briquette from cashew nut shells with 10%binder(Char_CNS_10%).The average energy efficiency of the“jambar”stove was 15.68%,while that of the“Malgache”stove was 12.41%.The average specific fuel consumption of the“jambar”stove was 0.12 kg of fuel per kilogram of water while that of the“Malgache”stove was 0.15 kg of fuel per kilogram of water.In terms of gaseous emissions,CO(carbon monoxide)concentrations were very high for char briquettes from corn cobs,with a CO emission factor of 0.40 g/min and NOx emission factor of 9.79 mg/min.For char briquettes from cashew nut shells,CO and NOx emission factors were respectively 0.30 g/min and 5.32 mg/min.The lowest average concentrations were obtained with char briquettes from peanut shells with a CO emission factor of 0.25 g/min and NO_(x) 3.98 mg/min.展开更多
In this study, the effect of doping hexanol into biodiesel which is from neat cashew nut shell biodiesel oil on the emissions and the performance characteristics was studied in a constant speed diesel engine. The main...In this study, the effect of doping hexanol into biodiesel which is from neat cashew nut shell biodiesel oil on the emissions and the performance characteristics was studied in a constant speed diesel engine. The main purpose of this work is to reduce various emissions and also to improve the performance of the diesel engine when fueled with blends of hexanol and neat cashew nut shell biodiesel. Cashew nut shell oil is not edible, and hence it can be used as a viable alternative to diesel.Cashew nut shell biodiesel is prepared by conventional transesterification. Hexanol with 99.2% purity was employed as an oxygenated additive. Experimental studies were conducted by fueling diesel as a baseline and by fueling hexanol and neat cashew nut shell biodiesel mixture. A fuel comprising 10%(by volume) of hexanol and 90%(by volume) neat cashew nut shell biodiesel was referred to as CNSBD900 H100 and fuel comprising 20%(by volume) of hexanol and 80%(by volume)of neat cashew nut shell biodiesel was referred to as CNSBD800 H200. This study also investigated the possibility of using pure biofuel in an unmodified naturally aspirated diesel engine. The outcome of this study showed that adding hexanol at10% and 20%(by volume) to cashew nut shell biodiesel results in a reduction in emissions. In addition, a significant improvement in brake thermal efficiency and reduction in brake-specific fuel consumptions were achieved. Hence, it could be concluded that hexanol could be a viable and promising additive for improving the drawbacks of biodiesel when it was used to fuel an unmodified diesel engine.展开更多
Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an...Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.展开更多
This study paves the way on reducing smoke emission and NO_x emissions of research diesel engine by detailing the e ect of water addition in biodiesel. Fuel samples were prepared with di erent concentrations of water ...This study paves the way on reducing smoke emission and NO_x emissions of research diesel engine by detailing the e ect of water addition in biodiesel. Fuel samples were prepared with di erent concentrations of water in orange peel oil biodiesel(94% waste orange peel oil biodiesel + 4% water + 2% Span 80(WOPOBDE1) and 90% waste orange peel oil biodiesel + 8% water + 2% Span 80(WOPOBDE2). Span 80 was employed as a nonionic surfactant, which emulsifies water in biodiesel. Experimental results revealed that the nitrogen oxides and smoke emission of orange peel oil biodiesel emulsion were reduced by 11%–19% and 3%–21%, respectively, compared to that of neat orange peel oil biodiesel(WOPOBD). In addition, the introduction of orange peel oil–water emulsions in the diesel engine considerably reduced the emissions of unburned hydrocarbons and carbon monoxide. The overall hydrocarbon emission of WOPOBDE2 was 12.2% lower than that of WOPOBD and 16.3% lower than that of diesel. The overall CO emission of WOPOBDE2 was 17% lower than that of base fuel(WOPOBD) and 21.8% lower than that of diesel. Experimental results revealed that modified fuel had higher brake thermal e ciency and lower brake specific fuel consumption than that of base fuel at all engine brake power levels.展开更多
Diesel engine alternative fuels, such as methanol and biodiesel, are beneficial to reduce diesel engine emission. In order to study the influence of methanol and biodiesel on the performance, economy and emission of s...Diesel engine alternative fuels, such as methanol and biodiesel, are beneficial to reduce diesel engine emission. In order to study the influence of methanol and biodiesel on the performance, economy and emission of small agricultural diesel engine, the physical-chemical properties(cetane number, lower heat value(LHV), viscosity, etc.) of methanol and biodiesel were analyzed. The methanol and biodiesel showed good complementary property to some extent. When a large proportion of methanol was added into biodiesel, the cetane number of the methanol/biodiesel blend will be greatly reduced. Since the cetane number of the blend fuel has great influence on the combustion process of diesel engine, after testing for blending ratio of methanol/biodiesel, the blend was prepared with 5%(BM5), 10%(BM10) and 15%(BM15) methanol, respectively. Di-Tert-Butyl Peroxide(DTBP) was chosen as a cetane number improver to be added into methanol/biodiesel blend. 0.25%, 0.50% and 0.75% of DTBP was added into BM15. The bench test was carried out on a 186 FA diesel engine to study the effect of methanol and DTBP on the engine performance and emissions. The results show that, at rated condition, compared with biodiesel, the NO;concentration of BM5, BM10 and BM15 is reduced by 5.02%, 33.85% and 21.24%, and smoke is reduced by 5.56%, 22.22% and 55.56%. However, the engine power is also reduced by 5.77%, 14.23% and 25.41%, and the brake specific energy consumption is increased by 3.31%, 7.78% and 6.37%. The addition of DTBP in methanol/biodiesel could recover the engine power to the level of diesel. DTBP shows good effect on the reduction of the brake specific energy consumption and NO_(x), CO, HC concentration, but a little increase of exhaust smoke.展开更多
The engine performance and exhaust emissions of biodiesel produced from peanut oil must be evaluated to assess its potential as an alternative diesel fuel. In this study, two diesel engines rated at 14.2 kW (small) an...The engine performance and exhaust emissions of biodiesel produced from peanut oil must be evaluated to assess its potential as an alternative diesel fuel. In this study, two diesel engines rated at 14.2 kW (small) and 60 kW (large) were operated on pure peanut oil biodiesel (PME) and its blends with a reference diesel (REFDIESEL). Results showed that comparable power and torque were delivered by both the small and large engines when ran on pure PME than on REFDIESEL while brake-specific fuel consumption (BSFC) was found to be higher in pure PME. Higher exhaust concentrations of nitrogen oxides (NOx), carbon dioxide (CO2) and total hydrocarbons (THC) and lower carbon monoxide (CO) emissions were observed in the small engine when using pure PME. Lower CO2, CO and THC emissions were obtained when running the large engine with pure PME. Blends with low PME percentage showed insignificant changes in both engine performance and exhaust emissions as compared with the reference diesel. Comparison with soybean biodiesel indicates similar engine performance. Thus, blends of PME with diesel may be used as a supplemental fuel for steady-state non-road diesel engines to take advantage of the lubricity of biodiesel as well as contributing to the goal of lowering the dependence to petroleum diesel.展开更多
γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil d...γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil diesel (D), D + biodiesel (BD) and D + BD + GVL blends. A four-cylinder, turbocharged direct injection diesel engine was used for the tests. The engine was coupled to a dynamometer to vary the load. CO, NOx, THC and smoke emissions were measured by using a multi-channel gas analyzer. Combustion characteristics were assessed by in-cylinder pressure data with respect to crank angle and the derived heat release rates. Compared with D, and D + BD blends, addition of GVL had relatively little effect on engine performance and NOx emission, but reduced the exhaust concentration of CO, unburned fuel and smoke significantly. The smoke reduction is particularly notable in view of the very recent suggestion that black carbon is the second most important greenhouse gas in the atmosphere next to carbon dioxide. No diesel engine study with GVL has been reported so far.展开更多
As pig production is a main contributor of greenhouse gas(GHG) emissions from livestock sector,the carbon emissions of pig production are attracting increasing attention,especially in the developing countries. Based o...As pig production is a main contributor of greenhouse gas(GHG) emissions from livestock sector,the carbon emissions of pig production are attracting increasing attention,especially in the developing countries. Based on the panel data of 30 provinces in China from 2001 to 2012,this paper measures the provincial carbon emission performance(CEP) of pig production and we use a Malmquist DEA approach to analyze the decomposition which includes desirable and undesirable output. Furthermore,the regional disparity in carbon emission performance of pig production is also analyzed and finally the convergence is tested. The main results are as follows:(i) there are provincial differences in carbon emission performance changing of pig production in China,and the carbon emission performance of pig production in 30 provinces has a downward trend during this period;(ii) among China’s three major economic regions,in terms of carbon emission performance of pig production,they are ranked in descending order as follows: Western China,Central China and Eastern China;(iii) convergence testing shows that there is a convergence trend for carbon emission performance both nationally and for the three regions.展开更多
Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and co...Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar.展开更多
Cape Chestnut oil was processed to biodiesel through transesterification. Cape Chestnut kennels are reported to have oil content of 60% - 63% [1]. Properties of biodiesel were determined and compared with those of die...Cape Chestnut oil was processed to biodiesel through transesterification. Cape Chestnut kennels are reported to have oil content of 60% - 63% [1]. Properties of biodiesel were determined and compared with those of diesel and engine tests done at a constant speed of 1500 RPM on the biodiesel blends to evaluate their performance and emissions characteristics. Performance evaluation was in terms of Brake Specific Fuel Consumption (BSFC), Brake Horse Power (BHP) and Brake Thermal Efficiency (ETE). The engine was initially run on diesel to establish the reference characteristics before running on biodiesel blends. The biodiesel was blended with diesel volumetrically to 80% (B80), 50% (B50), 20% (B20) and 5% (B5) the percentage being the volume of biodiesel in the blended fuel. Diesel fuel had the lowest BSFC followed by B5 whose BSFC was 7.3% higher than that of diesel. BTE for B100 was lower than that of diesel by 20.3% while that of B5 was 7.6% lower. Concentration of SO2 in B100 was 92.7% lower than that of diesel fuel while that of B20 was 24.7% lower. NO and NO2 concentrations for B100 were around 15% higher than that of diesel. Particulate matter of less than 10 μm diameter (PM10) for diesel was found to be 72% of the total collected from all the test fuels as compared to that of biodiesel blends at 28%. The study concluded that Cape Chestnut biodiesel blends containing up to 20% biodiesel can be used in an unmodified diesel engine since their performance and emission characteristics were very similar to that of diesel but with reduced toxic gas emissions therefore friendly to the environment.展开更多
In order to obtain higher emission performance than that of a traditional M-type cathode, we have developed a new type impregnated dispenser cathode. The new cathode is impregnated with a new active substance with mol...In order to obtain higher emission performance than that of a traditional M-type cathode, we have developed a new type impregnated dispenser cathode. The new cathode is impregnated with a new active substance with molar ratio of 26BaO·29SrO·8Sc2O3 ·7CaO·Al2O3 . This paper introduces the emission performance, surface active material, and work function of the new cathode. At 1100℃B , the DC current density and pulse current density are 30.6±1.0 A/cm2 and 171.6±2.8 A/cm2 , respectively, 2.1 and 5.4 times of that of an M-type cathode. The work function of the new cathode is 1.668± 0.002 eV. High concentration O-Al-Sc-Sr-Ba and O-Al-Sc-Ba are found in the pores and at pore edges, respectively. By comparing the emission performances and surface characteristics of as-polished and as-cleaned cathodes, it is proposed that, the emission around pore ends forms the major part of the total emission for the new cathodes.展开更多
The potential of biodiesel fuels from various vegetable oil sources such as sunflower (SFME), safflower (SAFME), peanut (PME) and canola (CME) as well as from low-cost chicken fat (CFME) to supplement increasing biodi...The potential of biodiesel fuels from various vegetable oil sources such as sunflower (SFME), safflower (SAFME), peanut (PME) and canola (CME) as well as from low-cost chicken fat (CFME) to supplement increasing biodiesel demands must be evaluated in terms of the corresponding engine performance and exhaust emissions. In this study, two diesel engines rated at 14.2 kW (small) and 60 kW (large) were operated by using the different biodiesel fuels and a reference diesel. Results showed that both the small and large engines delivered similar power when using biodiesel fuels in the expense of higher brake-specific fuel consumptions (BSFC). Higher exhaust concentrations of nitrogen oxides (NOx) and carbon dioxide (CO2) while lower carbon dioxide (CO) and negligible sulfur dioxide (SO2) emissions were observed in both engines. Total hydrocarbon emissions (THC) were higher in both engines when using SME, SFME and CME but comparable when using CFME, SAFME and PME in the large engine. Thus, with the increasing demand for biodiesel, alternative feedstock sources such as those used in this study may be utilized to take advantage of their availability, renewability and environmental benefits.展开更多
Diesel engines are the major contributors of various types of air polluting gases like carbon monoxide, oxides of nitrogen, smoke, etc. Improvement of fuel properties is essential for suppression of Diesel pollutant e...Diesel engines are the major contributors of various types of air polluting gases like carbon monoxide, oxides of nitrogen, smoke, etc. Improvement of fuel properties is essential for suppression of Diesel pollutant emissions along with the optimization of design factors and after treatment equipment. Studies conducted in the past have shown that a significant reduction were obtained in the emissions using oxygenates. This paper investigates the performance and emission characteristics of a direct injection Diesel engine fueled with 2 Ethoxy Ethyl Acetate (EEA) blends. Different fuel blends which contain 5%, 10% and 15% of EEA were prepared and the effect of these blends on performance and emissions were studied on a single cylinder direct injection Diesel engine. The blends were tested under different load conditions and the result showed that EEA blended fuels improves the performance of the engine and reduce the emission level significantly.展开更多
We present in this paper the results of experimental and numerical study of the thermal performances of a cook stove prototype intended for the parboiling of paddy rice. Thus, the experimental results show that the op...We present in this paper the results of experimental and numerical study of the thermal performances of a cook stove prototype intended for the parboiling of paddy rice. Thus, the experimental results show that the optimal mass of husk rice is M = 7.15 kg for a good combustion within the combustion chamber and got a maximum temperature at the level of the burners surface. This temperature is T<sub>cu1</sub>=304.78°C. The circulating air flow rate by forced convection is Q<sub>m</sub> = 0.09112 m<sup>-3</sup>·s<sup>-1</sup>. The vertical side walls temperature is T<sub>ple</sub> = 140.6°C and the water temperature and vapor is about 144.6°C in the stockpot. The gas combustion is composed of carbon dioxide (CO<sub>2</sub>), carbon monoxide (CO), methane (CH<sub>4</sub>) and the ratio of hydrogen to nitrogen (H<sub>2</sub>/N<sub>2</sub>). The results from the numerical modeling indicate T<sub>cu1</sub>=307.8°C, T<sub>ple</sub> = 144.55°C and a Q<sub>m</sub> = 0.09258 m<sup>-3</sup>.s<sup>-1</sup>. The average thermal efficiency of the cookstove is η = 46.6% and the power developed by the cookstove is about ≈6 kW. Despite the heat losses, the cookstove remains interesting for paddy rice parboiling activities.展开更多
Increasing global environmental issues and depleting fossil fuel reserves has necessitated the need for alternative and sustainable fuel. In this paper, the effects of biodiesel and its blend on engine emission and pe...Increasing global environmental issues and depleting fossil fuel reserves has necessitated the need for alternative and sustainable fuel. In this paper, the effects of biodiesel and its blend on engine emission and performance characteristics in an internal combustion engine were analyzed. Biodiesel derived from the transesterification of raw palm oil was blended with diesel fuel at different proportions designated as PO5 (5% Biodiesel and 95% Diesel), PO10 (10% Biodiesel and 90% Diesel), PO15 (15% Biodiesel and 85% Diesel), PO20 (20% Biodiesel and 80% Diesel), PO50 (50% Biodiesel and 50% Diesel), PO85 (85% Biodiesel and 15% Diesel), and PO100 (100% Biodiesel). A Lombardini 2-cylinder, four-stroke direct injection diesel engine with a compression ratio of 22.8 was developed using Ricardo Wave software in which diesel, palm oil biodiesel blends and pure biodiesel are used in the model, and the obtained results were analysed and presented. The simulation was done under varying engine speeds of 1200 rpm to 3200 rpm at full load condition. Biodiesel and its blends are more environment-friendly and non-toxic when compared to diesel fuel;it also improves the mechanical efficiency of the engines, and above all can also lead to a reduction in poverty among rural dwellers. The obtained results showed that brake specific fuel consumption and brake thermal efficiency increased with palm oil biodiesel blends as compared to diesel fuel which might be a result of biodiesel’s lower heating value, and the increase in thermal energy may be a result of the oxygenation of the biodiesel blend as compared to pure diesel. In terms of brake torque, palm oil biodiesel blends were lesser than diesel fuel. The CO, HC, and NO<sub>x</sub> emissions of palm oil biodiesel blends decreased significantly compared to that of pure diesel. From this study, palm oil biodiesel emits lesser emissions than diesel fuel and its performance characteristics are similar to diesel fuel. Therefore, palm oil biodiesel can be used without any modifications directly in a diesel engine. In addition, it can also be used as blends as an alternative and sustainable fuel, decreasing air pollution, and increasing environmental sustainability.展开更多
Biodiesel derived from indigenous feed stocks such as Tylosema esculentum kernel oil is deemed a feasible alternative to petroleum diesel for the diesel engine. This paper presents results of investigation of performa...Biodiesel derived from indigenous feed stocks such as Tylosema esculentum kernel oil is deemed a feasible alternative to petroleum diesel for the diesel engine. This paper presents results of investigation of performance and emissions characteristics of diesel engine using Tylosema biodiesel. In this investigation, Tylosema biodiesel was prepared, analyzed and compared with the performance of petroleum diesel fuel using a single cylinder compression ignition diesel engine. The specific fuel consumption, engine torque, engine brake power, hydrocarbons, carbon monoxide and carbon dioxide were analyzed. The tests showed a decrease in engine brake power and torque with increase in engine load, while specific fuel consumption showed an increasing trend with maximum variation of 33% between the two fuels at engine load of 90%. Emission levels of hydrocarbons, carbon monoxide and carbon dioxide showed an increasing trend with increase in load for both fuels. Tylosema biodiesel produced significantly lower concentrations of hydrocarbons than petroleum diesel, while levels of carbon dioxide and carbon monoxide were largely comparable to those of petroleum diesel. Soot production from combustion ofTylosema biodiesel was found to be approximately 98% lower than that from combustion of petroleum biodiesel, demonstrating insignificant contribution to environmental pollution.展开更多
Corporate sustainability reporting has become increasingly important in recent years.However,conventional approaches reach their limits when it comes to quantifying and measuring the actual sustainability performance ...Corporate sustainability reporting has become increasingly important in recent years.However,conventional approaches reach their limits when it comes to quantifying and measuring the actual sustainability performance of a company.This article presents a new approach:Sustainable Performance Accounting(SPA),which is based on an extension of bookkeeping by including ESG bookkeeping.SPA enables companies to systematically measure and manage their sustainability performance.The article provides an overview of the basics of SPA methodology and uses a comprehensive example showing how SPA can be implemented in practice.The article is aimed at interested readers from science and practice as well as decision-makers who are interested in future-oriented sustainability reporting.展开更多
Two feeding patterns of the segregated weaning or grazing in the pasture are carried out worldwide in animal production. To investigate the difference of growth performance and rumen microorganism population related t...Two feeding patterns of the segregated weaning or grazing in the pasture are carried out worldwide in animal production. To investigate the difference of growth performance and rumen microorganism population related to methane metabolism in the two feeding patterns, three groups of lambs (70 in total) were used: Weaning at 21 days old and being subjected to high-concentration diets (3WK group with 20 lambs), weaning at 35 days old and being subjected to high-concentration diets (5WK group with 20 lambs), or grazing at pasture with the nursing mother (Grazing group with 30 lambs). The growth performance, pH value of rumen content, and the rumen microbes were investigated during weaning period and fattening period with approximately 3 months. Our results showed that lambs in 3WK and 5WK groups demonstrated a better growth performance than the lambs in Grazing group, but no significant difference was observed in the pH value between the three groups (P〉0.05). The total rumen bacterial population of the Grazing lambs was significantly lower than that of 3WK lambs (P〈0.05) and 5WK lambs (P〈0.05); however, the population of methanogens was 4.2- and 2.7-fold lower in the 3WK (P〈0.05) and 5WK (P〈0.05) lambs compared with Grazing lambs, respectively; protozoa were also 3.5- and 3.4-fold lower in the 3WK (P〈0.05) and 5WK (P〈0.05) lambs, respectively. The results revealed that segregated weaning lambs may have better growth performance, and reduce methane-producing microbes.展开更多
To obtain the fracture parameters of concrete, fracture tests were conducted with three-point bending beam method aiming at 30 concrete beams with different sizes and different intensity. The concrete specimen with pr...To obtain the fracture parameters of concrete, fracture tests were conducted with three-point bending beam method aiming at 30 concrete beams with different sizes and different intensity. The concrete specimen with prefabricated crack to determine the fracture parameters of concrete were conducted and the fracture performance of the specimen was analyzed. The test results show that, initial fracture toughness is unrelated to the size of specimens; while unstable fracture toughness is related to the size of specimens. As for specimens of bastard size, when concrete intensity is relatively low, unstable fracture toughness increases along with the increase of intensity; when concrete intensity is relatively high, unstable fracture toughness will decrease; when concrete intensity increases continuously, unstable fracture toughness will further increase somewhat. As for specimens of standard size, unstable fracture toughness will increase along with the increase of intensity. Aiming at concrete beam specimens, we conducted two-dimensional non-linear finite element analysis, obtained the stress intensity factor, and carried out contrastive analysis with the experimental results.展开更多
This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted...This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted where the drilling rate-of-penetration(ROP) was measured at a series of step-wise increasing static bit thrusts or weight-on-bits(WOBs). Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission(AE) system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT(linear variable differential transformer) recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP.展开更多
基金funded by the Research and Innovation Action project BIO4AFRICA implemented under European Union Funding for Research&Innovation,EU HORIZON 2020(Grant Agreement No.101000762)。
文摘In this article,we evaluated the energy performance parameters and gas emissions to identify which of the stoves studied performs best,and the biomass char briquettes with less emission.Biomass char briquettes from peanut shells,cashew nut shells,and corn cobs were produced using wheat flour as a binder.The binder rate was set at 9%and 10%.Based on the energy performance parameters,it was highlighted that the char briquette from corn cob with 9%binder(Char_CC_9%)has the best energy performance,followed by the char briquette from peanut shells with 9%binder(Char_PNS_9%),and lastly,the char briquette from cashew nut shells with 10%binder(Char_CNS_10%).The average energy efficiency of the“jambar”stove was 15.68%,while that of the“Malgache”stove was 12.41%.The average specific fuel consumption of the“jambar”stove was 0.12 kg of fuel per kilogram of water while that of the“Malgache”stove was 0.15 kg of fuel per kilogram of water.In terms of gaseous emissions,CO(carbon monoxide)concentrations were very high for char briquettes from corn cobs,with a CO emission factor of 0.40 g/min and NOx emission factor of 9.79 mg/min.For char briquettes from cashew nut shells,CO and NOx emission factors were respectively 0.30 g/min and 5.32 mg/min.The lowest average concentrations were obtained with char briquettes from peanut shells with a CO emission factor of 0.25 g/min and NO_(x) 3.98 mg/min.
文摘In this study, the effect of doping hexanol into biodiesel which is from neat cashew nut shell biodiesel oil on the emissions and the performance characteristics was studied in a constant speed diesel engine. The main purpose of this work is to reduce various emissions and also to improve the performance of the diesel engine when fueled with blends of hexanol and neat cashew nut shell biodiesel. Cashew nut shell oil is not edible, and hence it can be used as a viable alternative to diesel.Cashew nut shell biodiesel is prepared by conventional transesterification. Hexanol with 99.2% purity was employed as an oxygenated additive. Experimental studies were conducted by fueling diesel as a baseline and by fueling hexanol and neat cashew nut shell biodiesel mixture. A fuel comprising 10%(by volume) of hexanol and 90%(by volume) neat cashew nut shell biodiesel was referred to as CNSBD900 H100 and fuel comprising 20%(by volume) of hexanol and 80%(by volume)of neat cashew nut shell biodiesel was referred to as CNSBD800 H200. This study also investigated the possibility of using pure biofuel in an unmodified naturally aspirated diesel engine. The outcome of this study showed that adding hexanol at10% and 20%(by volume) to cashew nut shell biodiesel results in a reduction in emissions. In addition, a significant improvement in brake thermal efficiency and reduction in brake-specific fuel consumptions were achieved. Hence, it could be concluded that hexanol could be a viable and promising additive for improving the drawbacks of biodiesel when it was used to fuel an unmodified diesel engine.
文摘Achieving simultaneous reduction of NOx,CO and unburned hydrocarbon(UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research.The present work focuses on an experimental investigation conducted on a dual fuel(diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation(EGR) ratio on performance and emission characteristics at part loads.The use of EGR at high levels seems to be unable to improve the engine performance at part loads.However,it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency,resulting in reduced levels of both unburned hydrocarbon and NOx emissions.CO and UHC emissions are reduced by 24% and 31%,respectively,The NOx emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.
文摘This study paves the way on reducing smoke emission and NO_x emissions of research diesel engine by detailing the e ect of water addition in biodiesel. Fuel samples were prepared with di erent concentrations of water in orange peel oil biodiesel(94% waste orange peel oil biodiesel + 4% water + 2% Span 80(WOPOBDE1) and 90% waste orange peel oil biodiesel + 8% water + 2% Span 80(WOPOBDE2). Span 80 was employed as a nonionic surfactant, which emulsifies water in biodiesel. Experimental results revealed that the nitrogen oxides and smoke emission of orange peel oil biodiesel emulsion were reduced by 11%–19% and 3%–21%, respectively, compared to that of neat orange peel oil biodiesel(WOPOBD). In addition, the introduction of orange peel oil–water emulsions in the diesel engine considerably reduced the emissions of unburned hydrocarbons and carbon monoxide. The overall hydrocarbon emission of WOPOBDE2 was 12.2% lower than that of WOPOBD and 16.3% lower than that of diesel. The overall CO emission of WOPOBDE2 was 17% lower than that of base fuel(WOPOBD) and 21.8% lower than that of diesel. Experimental results revealed that modified fuel had higher brake thermal e ciency and lower brake specific fuel consumption than that of base fuel at all engine brake power levels.
基金Sponsored by the Open Project of State Key Laboratory of Internal Combustion Engine Combustion,Tianjin University(Grand No.K2020-12)the Project of Natural Science Foundation of Jiangsu Province(Grant No.BK20200910)+1 种基金the Natural Science Research Projects in Jiangsu Higher Education Institutions(Grant No.20KJB470015)the Provincial Engineering Research Center for New Energy Vehicle Intelligent Control and Simulation Test Technology of Sichuan(Grant No.XNYQ2021-003)。
文摘Diesel engine alternative fuels, such as methanol and biodiesel, are beneficial to reduce diesel engine emission. In order to study the influence of methanol and biodiesel on the performance, economy and emission of small agricultural diesel engine, the physical-chemical properties(cetane number, lower heat value(LHV), viscosity, etc.) of methanol and biodiesel were analyzed. The methanol and biodiesel showed good complementary property to some extent. When a large proportion of methanol was added into biodiesel, the cetane number of the methanol/biodiesel blend will be greatly reduced. Since the cetane number of the blend fuel has great influence on the combustion process of diesel engine, after testing for blending ratio of methanol/biodiesel, the blend was prepared with 5%(BM5), 10%(BM10) and 15%(BM15) methanol, respectively. Di-Tert-Butyl Peroxide(DTBP) was chosen as a cetane number improver to be added into methanol/biodiesel blend. 0.25%, 0.50% and 0.75% of DTBP was added into BM15. The bench test was carried out on a 186 FA diesel engine to study the effect of methanol and DTBP on the engine performance and emissions. The results show that, at rated condition, compared with biodiesel, the NO;concentration of BM5, BM10 and BM15 is reduced by 5.02%, 33.85% and 21.24%, and smoke is reduced by 5.56%, 22.22% and 55.56%. However, the engine power is also reduced by 5.77%, 14.23% and 25.41%, and the brake specific energy consumption is increased by 3.31%, 7.78% and 6.37%. The addition of DTBP in methanol/biodiesel could recover the engine power to the level of diesel. DTBP shows good effect on the reduction of the brake specific energy consumption and NO_(x), CO, HC concentration, but a little increase of exhaust smoke.
文摘The engine performance and exhaust emissions of biodiesel produced from peanut oil must be evaluated to assess its potential as an alternative diesel fuel. In this study, two diesel engines rated at 14.2 kW (small) and 60 kW (large) were operated on pure peanut oil biodiesel (PME) and its blends with a reference diesel (REFDIESEL). Results showed that comparable power and torque were delivered by both the small and large engines when ran on pure PME than on REFDIESEL while brake-specific fuel consumption (BSFC) was found to be higher in pure PME. Higher exhaust concentrations of nitrogen oxides (NOx), carbon dioxide (CO2) and total hydrocarbons (THC) and lower carbon monoxide (CO) emissions were observed in the small engine when using pure PME. Lower CO2, CO and THC emissions were obtained when running the large engine with pure PME. Blends with low PME percentage showed insignificant changes in both engine performance and exhaust emissions as compared with the reference diesel. Comparison with soybean biodiesel indicates similar engine performance. Thus, blends of PME with diesel may be used as a supplemental fuel for steady-state non-road diesel engines to take advantage of the lubricity of biodiesel as well as contributing to the goal of lowering the dependence to petroleum diesel.
文摘γ-valerolactone (GVL) is a C5-cyclic ester that can be produced from biomass providing a potentially renewable fuel for transportation and feedstock for the chemical industry. Experiments were performed with fossil diesel (D), D + biodiesel (BD) and D + BD + GVL blends. A four-cylinder, turbocharged direct injection diesel engine was used for the tests. The engine was coupled to a dynamometer to vary the load. CO, NOx, THC and smoke emissions were measured by using a multi-channel gas analyzer. Combustion characteristics were assessed by in-cylinder pressure data with respect to crank angle and the derived heat release rates. Compared with D, and D + BD blends, addition of GVL had relatively little effect on engine performance and NOx emission, but reduced the exhaust concentration of CO, unburned fuel and smoke significantly. The smoke reduction is particularly notable in view of the very recent suggestion that black carbon is the second most important greenhouse gas in the atmosphere next to carbon dioxide. No diesel engine study with GVL has been reported so far.
基金Supported by National Natural Science Foundation of China(41171436)National Social Science Foundation of China(14AZD002)
文摘As pig production is a main contributor of greenhouse gas(GHG) emissions from livestock sector,the carbon emissions of pig production are attracting increasing attention,especially in the developing countries. Based on the panel data of 30 provinces in China from 2001 to 2012,this paper measures the provincial carbon emission performance(CEP) of pig production and we use a Malmquist DEA approach to analyze the decomposition which includes desirable and undesirable output. Furthermore,the regional disparity in carbon emission performance of pig production is also analyzed and finally the convergence is tested. The main results are as follows:(i) there are provincial differences in carbon emission performance changing of pig production in China,and the carbon emission performance of pig production in 30 provinces has a downward trend during this period;(ii) among China’s three major economic regions,in terms of carbon emission performance of pig production,they are ranked in descending order as follows: Western China,Central China and Eastern China;(iii) convergence testing shows that there is a convergence trend for carbon emission performance both nationally and for the three regions.
文摘Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar.
文摘Cape Chestnut oil was processed to biodiesel through transesterification. Cape Chestnut kennels are reported to have oil content of 60% - 63% [1]. Properties of biodiesel were determined and compared with those of diesel and engine tests done at a constant speed of 1500 RPM on the biodiesel blends to evaluate their performance and emissions characteristics. Performance evaluation was in terms of Brake Specific Fuel Consumption (BSFC), Brake Horse Power (BHP) and Brake Thermal Efficiency (ETE). The engine was initially run on diesel to establish the reference characteristics before running on biodiesel blends. The biodiesel was blended with diesel volumetrically to 80% (B80), 50% (B50), 20% (B20) and 5% (B5) the percentage being the volume of biodiesel in the blended fuel. Diesel fuel had the lowest BSFC followed by B5 whose BSFC was 7.3% higher than that of diesel. BTE for B100 was lower than that of diesel by 20.3% while that of B5 was 7.6% lower. Concentration of SO2 in B100 was 92.7% lower than that of diesel fuel while that of B20 was 24.7% lower. NO and NO2 concentrations for B100 were around 15% higher than that of diesel. Particulate matter of less than 10 μm diameter (PM10) for diesel was found to be 72% of the total collected from all the test fuels as compared to that of biodiesel blends at 28%. The study concluded that Cape Chestnut biodiesel blends containing up to 20% biodiesel can be used in an unmodified diesel engine since their performance and emission characteristics were very similar to that of diesel but with reduced toxic gas emissions therefore friendly to the environment.
基金Supported by the National Natural Science Foundation of China (No. 60871053)the Major State Basic Research Development Program of China (No. 2013CB328901)
文摘In order to obtain higher emission performance than that of a traditional M-type cathode, we have developed a new type impregnated dispenser cathode. The new cathode is impregnated with a new active substance with molar ratio of 26BaO·29SrO·8Sc2O3 ·7CaO·Al2O3 . This paper introduces the emission performance, surface active material, and work function of the new cathode. At 1100℃B , the DC current density and pulse current density are 30.6±1.0 A/cm2 and 171.6±2.8 A/cm2 , respectively, 2.1 and 5.4 times of that of an M-type cathode. The work function of the new cathode is 1.668± 0.002 eV. High concentration O-Al-Sc-Sr-Ba and O-Al-Sc-Ba are found in the pores and at pore edges, respectively. By comparing the emission performances and surface characteristics of as-polished and as-cleaned cathodes, it is proposed that, the emission around pore ends forms the major part of the total emission for the new cathodes.
文摘The potential of biodiesel fuels from various vegetable oil sources such as sunflower (SFME), safflower (SAFME), peanut (PME) and canola (CME) as well as from low-cost chicken fat (CFME) to supplement increasing biodiesel demands must be evaluated in terms of the corresponding engine performance and exhaust emissions. In this study, two diesel engines rated at 14.2 kW (small) and 60 kW (large) were operated by using the different biodiesel fuels and a reference diesel. Results showed that both the small and large engines delivered similar power when using biodiesel fuels in the expense of higher brake-specific fuel consumptions (BSFC). Higher exhaust concentrations of nitrogen oxides (NOx) and carbon dioxide (CO2) while lower carbon dioxide (CO) and negligible sulfur dioxide (SO2) emissions were observed in both engines. Total hydrocarbon emissions (THC) were higher in both engines when using SME, SFME and CME but comparable when using CFME, SAFME and PME in the large engine. Thus, with the increasing demand for biodiesel, alternative feedstock sources such as those used in this study may be utilized to take advantage of their availability, renewability and environmental benefits.
文摘Diesel engines are the major contributors of various types of air polluting gases like carbon monoxide, oxides of nitrogen, smoke, etc. Improvement of fuel properties is essential for suppression of Diesel pollutant emissions along with the optimization of design factors and after treatment equipment. Studies conducted in the past have shown that a significant reduction were obtained in the emissions using oxygenates. This paper investigates the performance and emission characteristics of a direct injection Diesel engine fueled with 2 Ethoxy Ethyl Acetate (EEA) blends. Different fuel blends which contain 5%, 10% and 15% of EEA were prepared and the effect of these blends on performance and emissions were studied on a single cylinder direct injection Diesel engine. The blends were tested under different load conditions and the result showed that EEA blended fuels improves the performance of the engine and reduce the emission level significantly.
文摘We present in this paper the results of experimental and numerical study of the thermal performances of a cook stove prototype intended for the parboiling of paddy rice. Thus, the experimental results show that the optimal mass of husk rice is M = 7.15 kg for a good combustion within the combustion chamber and got a maximum temperature at the level of the burners surface. This temperature is T<sub>cu1</sub>=304.78°C. The circulating air flow rate by forced convection is Q<sub>m</sub> = 0.09112 m<sup>-3</sup>·s<sup>-1</sup>. The vertical side walls temperature is T<sub>ple</sub> = 140.6°C and the water temperature and vapor is about 144.6°C in the stockpot. The gas combustion is composed of carbon dioxide (CO<sub>2</sub>), carbon monoxide (CO), methane (CH<sub>4</sub>) and the ratio of hydrogen to nitrogen (H<sub>2</sub>/N<sub>2</sub>). The results from the numerical modeling indicate T<sub>cu1</sub>=307.8°C, T<sub>ple</sub> = 144.55°C and a Q<sub>m</sub> = 0.09258 m<sup>-3</sup>.s<sup>-1</sup>. The average thermal efficiency of the cookstove is η = 46.6% and the power developed by the cookstove is about ≈6 kW. Despite the heat losses, the cookstove remains interesting for paddy rice parboiling activities.
文摘Increasing global environmental issues and depleting fossil fuel reserves has necessitated the need for alternative and sustainable fuel. In this paper, the effects of biodiesel and its blend on engine emission and performance characteristics in an internal combustion engine were analyzed. Biodiesel derived from the transesterification of raw palm oil was blended with diesel fuel at different proportions designated as PO5 (5% Biodiesel and 95% Diesel), PO10 (10% Biodiesel and 90% Diesel), PO15 (15% Biodiesel and 85% Diesel), PO20 (20% Biodiesel and 80% Diesel), PO50 (50% Biodiesel and 50% Diesel), PO85 (85% Biodiesel and 15% Diesel), and PO100 (100% Biodiesel). A Lombardini 2-cylinder, four-stroke direct injection diesel engine with a compression ratio of 22.8 was developed using Ricardo Wave software in which diesel, palm oil biodiesel blends and pure biodiesel are used in the model, and the obtained results were analysed and presented. The simulation was done under varying engine speeds of 1200 rpm to 3200 rpm at full load condition. Biodiesel and its blends are more environment-friendly and non-toxic when compared to diesel fuel;it also improves the mechanical efficiency of the engines, and above all can also lead to a reduction in poverty among rural dwellers. The obtained results showed that brake specific fuel consumption and brake thermal efficiency increased with palm oil biodiesel blends as compared to diesel fuel which might be a result of biodiesel’s lower heating value, and the increase in thermal energy may be a result of the oxygenation of the biodiesel blend as compared to pure diesel. In terms of brake torque, palm oil biodiesel blends were lesser than diesel fuel. The CO, HC, and NO<sub>x</sub> emissions of palm oil biodiesel blends decreased significantly compared to that of pure diesel. From this study, palm oil biodiesel emits lesser emissions than diesel fuel and its performance characteristics are similar to diesel fuel. Therefore, palm oil biodiesel can be used without any modifications directly in a diesel engine. In addition, it can also be used as blends as an alternative and sustainable fuel, decreasing air pollution, and increasing environmental sustainability.
文摘Biodiesel derived from indigenous feed stocks such as Tylosema esculentum kernel oil is deemed a feasible alternative to petroleum diesel for the diesel engine. This paper presents results of investigation of performance and emissions characteristics of diesel engine using Tylosema biodiesel. In this investigation, Tylosema biodiesel was prepared, analyzed and compared with the performance of petroleum diesel fuel using a single cylinder compression ignition diesel engine. The specific fuel consumption, engine torque, engine brake power, hydrocarbons, carbon monoxide and carbon dioxide were analyzed. The tests showed a decrease in engine brake power and torque with increase in engine load, while specific fuel consumption showed an increasing trend with maximum variation of 33% between the two fuels at engine load of 90%. Emission levels of hydrocarbons, carbon monoxide and carbon dioxide showed an increasing trend with increase in load for both fuels. Tylosema biodiesel produced significantly lower concentrations of hydrocarbons than petroleum diesel, while levels of carbon dioxide and carbon monoxide were largely comparable to those of petroleum diesel. Soot production from combustion ofTylosema biodiesel was found to be approximately 98% lower than that from combustion of petroleum biodiesel, demonstrating insignificant contribution to environmental pollution.
文摘Corporate sustainability reporting has become increasingly important in recent years.However,conventional approaches reach their limits when it comes to quantifying and measuring the actual sustainability performance of a company.This article presents a new approach:Sustainable Performance Accounting(SPA),which is based on an extension of bookkeeping by including ESG bookkeeping.SPA enables companies to systematically measure and manage their sustainability performance.The article provides an overview of the basics of SPA methodology and uses a comprehensive example showing how SPA can be implemented in practice.The article is aimed at interested readers from science and practice as well as decision-makers who are interested in future-oriented sustainability reporting.
基金supported by the Earmarked Fund for the Modern Agro-Industry Technology Research System, China (CARS-39, 200903006)the Special Fund for Agro-Scientific Research in the Public Interest, China (201303062)
文摘Two feeding patterns of the segregated weaning or grazing in the pasture are carried out worldwide in animal production. To investigate the difference of growth performance and rumen microorganism population related to methane metabolism in the two feeding patterns, three groups of lambs (70 in total) were used: Weaning at 21 days old and being subjected to high-concentration diets (3WK group with 20 lambs), weaning at 35 days old and being subjected to high-concentration diets (5WK group with 20 lambs), or grazing at pasture with the nursing mother (Grazing group with 30 lambs). The growth performance, pH value of rumen content, and the rumen microbes were investigated during weaning period and fattening period with approximately 3 months. Our results showed that lambs in 3WK and 5WK groups demonstrated a better growth performance than the lambs in Grazing group, but no significant difference was observed in the pH value between the three groups (P〉0.05). The total rumen bacterial population of the Grazing lambs was significantly lower than that of 3WK lambs (P〈0.05) and 5WK lambs (P〈0.05); however, the population of methanogens was 4.2- and 2.7-fold lower in the 3WK (P〈0.05) and 5WK (P〈0.05) lambs compared with Grazing lambs, respectively; protozoa were also 3.5- and 3.4-fold lower in the 3WK (P〈0.05) and 5WK (P〈0.05) lambs, respectively. The results revealed that segregated weaning lambs may have better growth performance, and reduce methane-producing microbes.
基金Funded by the National Natural Science Foundation of China(No.51279111)The Non-profit Industry Financial Program by the Ministry of Water Resources in2012(No.201201038)
文摘To obtain the fracture parameters of concrete, fracture tests were conducted with three-point bending beam method aiming at 30 concrete beams with different sizes and different intensity. The concrete specimen with prefabricated crack to determine the fracture parameters of concrete were conducted and the fracture performance of the specimen was analyzed. The test results show that, initial fracture toughness is unrelated to the size of specimens; while unstable fracture toughness is related to the size of specimens. As for specimens of bastard size, when concrete intensity is relatively low, unstable fracture toughness increases along with the increase of intensity; when concrete intensity is relatively high, unstable fracture toughness will decrease; when concrete intensity increases continuously, unstable fracture toughness will further increase somewhat. As for specimens of standard size, unstable fracture toughness will increase along with the increase of intensity. Aiming at concrete beam specimens, we conducted two-dimensional non-linear finite element analysis, obtained the stress intensity factor, and carried out contrastive analysis with the experimental results.
基金funded by Atlantic Canada Opportunity Agency (AIF contract number: 7812636-1920044)
文摘This paper describes an investigation of active bit vibration on the penetration mechanisms and bit-rock interaction for drilling with a diamond impregnated coring bit. A series of drill-off tests(DOTs) were conducted where the drilling rate-of-penetration(ROP) was measured at a series of step-wise increasing static bit thrusts or weight-on-bits(WOBs). Two active DOTs were conducted by applying 60 Hz axial vibration at the bit-rock interface using an electromagnetic vibrating table mounted underneath the drilling samples, and a passive DOT was conducted where the bit was allowed to vibrate naturally with lower amplitude due to the compliance of the drilling sample mountings. During drilling, an acoustic emission(AE) system was used to record the AE signals generated by the diamond cutter penetration and the cuttings were collected for grain size analysis. The instrumented drilling system recorded the dynamic motions of the bit-rock interface using a laser displacement sensor, a load cell, and an LVDT(linear variable differential transformer) recorded the dynamic WOB and the ROP, respectively. Calibration with the drilling system showed that rotary speed was approximately the same at any given WOB, facilitating comparison of the results at the same WOB. Analysis of the experimental results shows that the ROP of the bit at any given WOB increased with higher amplitude of axial bit-rock vibration, and the drill cuttings increased in size with a higher ROP. Spectral analysis of the AEs indicated that the higher ROP and larger cutting size were correlated with a higher AE energy and a lower AE frequency. This indicated that larger fractures were being created to generate larger cutting size. Overall, these results indicate that a greater magnitude of axial bit-rock vibration produces larger fractures and generates larger cuttings which, at the same rotary speed, results in a higher ROP.