To remedy the empirical pitfalls of current chinese specifications and MUTCD 2009 guidelines in determining the placement distance of freeway exit advance guide signs,the driving maneuver of exiting traffic is analyze...To remedy the empirical pitfalls of current chinese specifications and MUTCD 2009 guidelines in determining the placement distance of freeway exit advance guide signs,the driving maneuver of exiting traffic is analyzed and the factors influencing placement distance are explored.Variables including the number of lanes,lane width,lane-changing time,driver's visual characteristics,sign installation methods and operating speeds on both freeway mainlines and exit ramps are found significant in explaining exit safety.Three different installation methods,namely ground installation,overhead installation and median installation,are introduced and their applicable conditions are given.Models,with the same structure among the three installation methods,are developed to compute the placement distance under different roadway geometric and traffic conditions.Taking overhead installation as an example,simulation results in TSIS-CORSIM show that the proposed distance reduces the number of lane changes in the area from the ramp nose to 500 m upstream by 58.93% compared with current Chinese specifications and 27.35% compared with MUTCD 2009 guidelines.Thus,the distances recommended in this paper have a better safety performance.展开更多
Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle tem- perature decreased to the critical temperature for a hot particle...Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle tem- perature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial tem- peratures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temper- ature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.展开更多
Modern industrial processes are typically characterized by large-scale and intricate internal relationships.Therefore,the distributed modeling process monitoring method is effective.A novel distributed monitoring sche...Modern industrial processes are typically characterized by large-scale and intricate internal relationships.Therefore,the distributed modeling process monitoring method is effective.A novel distributed monitoring scheme utilizing the Kantorovich distance-multiblock variational autoencoder(KD-MBVAE)is introduced.Firstly,given the high consistency of relevant variables within each sub-block during the change process,the variables exhibiting analogous statistical features are grouped into identical segments according to the optimal quality transfer theory.Subsequently,the variational autoencoder(VAE)model was separately established,and corresponding T^(2)statistics were calculated.To improve fault sensitivity further,a novel statistic,derived from Kantorovich distance,is introduced by analyzing model residuals from the perspective of probability distribution.The thresholds of both statistics were determined by kernel density estimation.Finally,monitoring results for both types of statistics within all blocks are amalgamated using Bayesian inference.Additionally,a novel approach for fault diagnosis is introduced.The feasibility and efficiency of the introduced scheme are verified through two cases.展开更多
A new method of confirming the desired safety headway distance and desired deceleration is put forward according to the detected static or moving target and its simulation results in Matlab are also presented. The val...A new method of confirming the desired safety headway distance and desired deceleration is put forward according to the detected static or moving target and its simulation results in Matlab are also presented. The validity of the algorithm to calculate the reference speeds of both the ACC vehicle and the targeted car according to the vector quadrangle composed of the relative distance, the relative azimuth angle, the relative speeds of the vehicles has also been demonstrated through numerical example in Matlab. New laws to obtain the desired deceleration by estimating the braking force according to the vehicle analyses force equation are established too.展开更多
The scope of this work is to present a multidisciplinary study in order to propose a tool called DIMZAL. DIMZAL forecasts fuelbreak safety zone sizes. To evaluate a safety zone and to prevent injury, the Acceptable Sa...The scope of this work is to present a multidisciplinary study in order to propose a tool called DIMZAL. DIMZAL forecasts fuelbreak safety zone sizes. To evaluate a safety zone and to prevent injury, the Acceptable Safety Distance (ASD) between the fire and firefighters is required. This distance is usually set thanks to a general rule-of-thumb: it should be at least 4 times the maximum flame length. A common assumption considers an empirical relationship between fireline intensity and flame length. In the current work which follows on from an oral presentation held at the VII International Conference on Forest Fire Research in Coimbra in 2014, an alternative way is proposed: a closed physical model is applied in order to quantize the ASD. This model is integrated in a software tool, which uses a simulation framework based on Discrete EVent system Specification formalism (DEVS), a 3D physical real-time model of surface fires developed at the University of Corsica and a mobile application based on a Google SDK to display the展开更多
As an efficient and advanced line inspection method, helicopter line patrol is gradually more and more used in transmission lines inspection, promoting the elaborate operation of transmission lines and reducing the ma...As an efficient and advanced line inspection method, helicopter line patrol is gradually more and more used in transmission lines inspection, promoting the elaborate operation of transmission lines and reducing the management cost. However, as a 'floating-potential conductor' near to a high-voltage transmission line, the helicopter would be at a high electric field region;and bring security risk to equipment and operating personnel. In this paper, the electric field strength near the cabin at locations of different distance from transmission lines is investigated by calculation, and the field in the helicopter cabin is also calculated with finite element method (FEM). The result indicates that the potential difference becomes higher with the decrease of the distance between the helicopter and transmission line. Considering the discharge energy and the guarantee of the persons’ safety, the safety distance is determined as d≥15 m.展开更多
At present,substantial scientific research achievements have been made in the research on landslide occurrence,movement mechanism,mitigation measures,and structural stability during tunnel excavation.However,the inter...At present,substantial scientific research achievements have been made in the research on landslide occurrence,movement mechanism,mitigation measures,and structural stability during tunnel excavation.However,the interaction mechanism of a tunnel under-traversing a slope body with potential landslides is still not well understood.Based on the field data provided by previous investigations in the study area,six sets of 1:100 laboratory experiment model tests were conducted to study the stability of the landslide-prone zone of the slope body with an under-traversing tunnel.The selected distances between the tunnel and the sliding surface are 1.5,3,and 5 times of the tunnel diameter,respectively.The experiment results show the interaction between the landslide-prone zone and the tunnel,elucidating the effect of potential landslides during the tunnel excavation process and the reaction of the landslide slip on the tunnel structure.Several conclusions are obtained:①During the process of tunnel excavation,the vertical displacement of the tunnel vault decreases with the increase of the buried depth.②The vertical displacement of the sliding surface increases with the increase of the buried depth of the tunnel.The horizontal displacement of sliding surface decreases with the increase of the buried depth.③After the occurrence of a rainfall-induced landslide,the vertical displacement of the tunnel vault in the 1.5-diameter-distance case is 57.29%greater than that in the 3.0-dismeter-distance case.④For a two-cave tunnel,it is suggested that the cave farther from the landslide toe should be firstly excavated since it may generate less structural deformation.展开更多
The net distance between the Xuetangwan interchange and the Huangshi tunnel exit of the Kaiyun expressway(Jiangkou-Yunyang-Longgang section)is used as an example in this paper.This paper analyses the problems in the s...The net distance between the Xuetangwan interchange and the Huangshi tunnel exit of the Kaiyun expressway(Jiangkou-Yunyang-Longgang section)is used as an example in this paper.This paper analyses the problems in the safety distance between expressway tunnel and interchange under multi tunnel,and proposes safety distance measures between expressway tunnel and interchange under multi tunnel,based on the current safety distance standard between expressway tunnel and interchange under multi tunnel.展开更多
A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the bas...A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.展开更多
In this paper, intrinsic safety and positive security distance control for an up/down elevator which extracts the materials from an underground coal mine is approached. For a better understanding of intrinsic safety a...In this paper, intrinsic safety and positive security distance control for an up/down elevator which extracts the materials from an underground coal mine is approached. For a better understanding of intrinsic safety and positive security, the first part of the paper describes the potential risk the workers are facing while working in dangerous environments like coal mining with “grisou” atmospheres and what the conditions of an unfortunate event to take place are. We presented the diagram and working principle for intrinsic safety equipment used in potential explosive areas based on which we modeled and simulated the intrinsic and positive security distance control in order to get a software solution for it. We created an algorithm and simulated the process in Matlab Simulink. The simulation results done in Matlab Simulink were then entered into a Moeller PLC using a ladder-type programming language. For protection against explosive atmospheres, the PLC is inserted into a metal housing with intrinsic protection and Positive Security.展开更多
The friction drive elevators the influence of the braking distance has very high significance to meet certain safety regulations and comfort.During the emergency braking the delay for the system a frame and a cabin sh...The friction drive elevators the influence of the braking distance has very high significance to meet certain safety regulations and comfort.During the emergency braking the delay for the system a frame and a cabin should be within the range from 0.2 to 9.81 m/s~2.However,there are no specialist literatures regarding the issues connected with emergency braking of elevating devices either.The results of the own empirical research work are presented regarding the influence of design changes on the working parameters of the friction drive elevator gears.ASG100,KB 160,PP16,PR2000UD and CHP2000 types of safety progressive gears are analyzed.ASG100,KB 160,PP16,PR2000UD type progressive gears are already produced by European manufacturers.CHP2000 type gears are established as the alternative option for the already existing solutions.The unique cam system has been used in the CHP 2000 gears.The cam leverage gives the chance to unblock,in a very easy way,the clamed gears after braking.Thus,it is a key aspect to perform laboratory tests over the braking process of a newly created solution.The proper value of the braking distance has a significant influence on the value of delay in terms of binding standards.The influence of loading on the effective braking distance and the value of the falling elevator cabin speed are analyzed and the results are presented.The results presented are interesting from lift devices operation and a new model of CHP 2000progressive gear point of view.展开更多
To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based ...To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based on the total discharge formulation and turbulence theory of slope flow.Using experimental data measured using the British pendulum test under varying WFT levels,a model for calculating the skid resistance,namely the British pendulum number(BPN),was formulated and used to quantitatively evaluate the effects of rainfall intensity,transverse,and longitudinal slopes on the computed BPN.The study results reveal that skid resistance is linearly proportional to the pavement transverse slope and inversely proportional to the rainfall intensity and the pavement longitudinal slope.In particular,rainfall intensity,along with pavement texture depth,exhibited a significant impact on the tire-pavement friction and skid-resistance performance.The results further indicate that driving safety under wet weather is predominantly governed by skid resistance and visibility.The BPN and sideway force coefficient(SFC60)values for new asphalt pavements under different rainfall intensities are provided along with some modification to the stopping sight distance(SSD)criteria.Safe driving speed limits are also determined using a safe-driving model to develop the appropriate speed limit strategies.The overall study results provide some insights,methodology approach,and reference data for the evaluation of pavement skid-resistance performance and driving safety conditions under different pavement slopes and rainfall intensities.展开更多
This paper presents a method using range deception jamming to evaluate the safety performance of the autonomous vehicle with millimetre wave(MMW)radar.The working principle of this method is described.Combined with a ...This paper presents a method using range deception jamming to evaluate the safety performance of the autonomous vehicle with millimetre wave(MMW)radar.The working principle of this method is described.Combined with a waveform edition software,an experimental platform is developed to generate a deceptive signal that contains false distance information.According to related theories and its principle,the configuration parameters of the experimental setup are calculated and configured.The MMW radar of evaluated vehicle should identify an objective when it receives the deceptive signal from the experimental setup.Even if no obstacle,the evaluated vehicle can immediately brake in order that its braking distance is measured.The experimental results show that the proposed method can meet the requirements of the safety performance evaluation for the autonomous vehicle with MMW radar,and it also overcomes some deficiencies of previous methods.展开更多
Gipps' model, a well-known safe distance car-following model, has a very strict restriction on the car-following behavior that the following vehicle has to maintain the exact safe distance to the leading vehicle t...Gipps' model, a well-known safe distance car-following model, has a very strict restriction on the car-following behavior that the following vehicle has to maintain the exact safe distance to the leading vehicle to avoid rear crash. However, this restriction is not consistent with the real traffic condition. Due to that, an enhanced safe distance car-following model is proposed first, and then calibrated and evaluated using the field data. Furthermore, the simulation is conducted to analyze the characteristics of the new model. The results of evaluation and simulation illustrate that the proposed model has higher simulation accuracy than the original Gipps' model, and can reproduce the stable flow and shock wave phenomena that are very common in real traffic.Moreover, the simulation results also prove that the enhanced model can better stabilize the traffic flow than Gipps' model.展开更多
Unidirectional two-lane freeway is a typical and the simplest form of freeway. The traffic flow char- acteristics including safety condition on two-lane freeway is of great significance in planning, design, and manage...Unidirectional two-lane freeway is a typical and the simplest form of freeway. The traffic flow char- acteristics including safety condition on two-lane freeway is of great significance in planning, design, and manage- ment of a freeway. Many previous traffic flow models are able to figure out flow characteristics such as speed, den- sity, delay, and so forth. These models, however, have great difficulty in reflecting safety condition of vehicles. Besides, for the cellular automation, one of the most widely used microscopic traffic simulation models, its discreteness in both time and space can possibly cause inaccuracy or big errors in simulation results. In this paper, a micro-simula- tion model of two-lane freeway vehicles is proposed to evaluate characteristics of traffic flow, including safety condition. The model is also discrete in time but continu- ous in space, and it divides drivers into several groups on the basis of their preferences for overtaking, which makes the simulation more aligned with real situations. Partial test is conducted in this study and results of delay, speed, volume, and density indicate the preliminary validity of our model, based on which the proposed safety coefficient evaluates safety condition under different flow levels. It is found that the results of this evaluation coincide with daily experience of drivers, providing ground for effectiveness of the safety coefficient.展开更多
基金Project of Florida Department of Transportation(No.BD54438)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2006BAJ18B03)
文摘To remedy the empirical pitfalls of current chinese specifications and MUTCD 2009 guidelines in determining the placement distance of freeway exit advance guide signs,the driving maneuver of exiting traffic is analyzed and the factors influencing placement distance are explored.Variables including the number of lanes,lane width,lane-changing time,driver's visual characteristics,sign installation methods and operating speeds on both freeway mainlines and exit ramps are found significant in explaining exit safety.Three different installation methods,namely ground installation,overhead installation and median installation,are introduced and their applicable conditions are given.Models,with the same structure among the three installation methods,are developed to compute the placement distance under different roadway geometric and traffic conditions.Taking overhead installation as an example,simulation results in TSIS-CORSIM show that the proposed distance reduces the number of lane changes in the area from the ramp nose to 500 m upstream by 58.93% compared with current Chinese specifications and 27.35% compared with MUTCD 2009 guidelines.Thus,the distances recommended in this paper have a better safety performance.
基金supported by the National Basic Research Program of China(2012CB719702)the International Science&Technology Cooperation Program of China(2014DFG72300)the Fundamental Research Funds for the Central University(WK2320000014)
文摘Trajectories of flying hot particles were predicted in this work, and the temperatures during the movement were also calculated. Once the particle tem- perature decreased to the critical temperature for a hot particle to ignite building insulation materials, which was predicted by hot-spot ignition theory, the distance particle traveled was determined as the minimum safety distance for preventing the ignition of building insulation materials by hot particles. The results showed that for sphere aluminum particles with the same initial velocities and diameters, the horizontal and vertical distances traveled by particles with higher initial tem- peratures were higher. Smaller particles traveled farther when other conditions were the same. The critical temperature for an aluminum particle to ignite rigid polyurethane foam increased rapidly with the decrease of particle diameter. The horizontal and vertical safety distances were closely related to the initial temper- ature, diameter and initial velocity of particles. These results could help update the safety provision of firework display.
基金support from the National Key Research&Development Program of China(2021YFC2101100)the National Natural Science Foundation of China(62322309,61973119).
文摘Modern industrial processes are typically characterized by large-scale and intricate internal relationships.Therefore,the distributed modeling process monitoring method is effective.A novel distributed monitoring scheme utilizing the Kantorovich distance-multiblock variational autoencoder(KD-MBVAE)is introduced.Firstly,given the high consistency of relevant variables within each sub-block during the change process,the variables exhibiting analogous statistical features are grouped into identical segments according to the optimal quality transfer theory.Subsequently,the variational autoencoder(VAE)model was separately established,and corresponding T^(2)statistics were calculated.To improve fault sensitivity further,a novel statistic,derived from Kantorovich distance,is introduced by analyzing model residuals from the perspective of probability distribution.The thresholds of both statistics were determined by kernel density estimation.Finally,monitoring results for both types of statistics within all blocks are amalgamated using Bayesian inference.Additionally,a novel approach for fault diagnosis is introduced.The feasibility and efficiency of the introduced scheme are verified through two cases.
文摘A new method of confirming the desired safety headway distance and desired deceleration is put forward according to the detected static or moving target and its simulation results in Matlab are also presented. The validity of the algorithm to calculate the reference speeds of both the ACC vehicle and the targeted car according to the vector quadrangle composed of the relative distance, the relative azimuth angle, the relative speeds of the vehicles has also been demonstrated through numerical example in Matlab. New laws to obtain the desired deceleration by estimating the braking force according to the vehicle analyses force equation are established too.
基金pported in part by the French Ministry of Research,the Corsican Region and the CNRS,under Grant CPER 2007-2013
文摘The scope of this work is to present a multidisciplinary study in order to propose a tool called DIMZAL. DIMZAL forecasts fuelbreak safety zone sizes. To evaluate a safety zone and to prevent injury, the Acceptable Safety Distance (ASD) between the fire and firefighters is required. This distance is usually set thanks to a general rule-of-thumb: it should be at least 4 times the maximum flame length. A common assumption considers an empirical relationship between fireline intensity and flame length. In the current work which follows on from an oral presentation held at the VII International Conference on Forest Fire Research in Coimbra in 2014, an alternative way is proposed: a closed physical model is applied in order to quantize the ASD. This model is integrated in a software tool, which uses a simulation framework based on Discrete EVent system Specification formalism (DEVS), a 3D physical real-time model of surface fires developed at the University of Corsica and a mobile application based on a Google SDK to display the
文摘As an efficient and advanced line inspection method, helicopter line patrol is gradually more and more used in transmission lines inspection, promoting the elaborate operation of transmission lines and reducing the management cost. However, as a 'floating-potential conductor' near to a high-voltage transmission line, the helicopter would be at a high electric field region;and bring security risk to equipment and operating personnel. In this paper, the electric field strength near the cabin at locations of different distance from transmission lines is investigated by calculation, and the field in the helicopter cabin is also calculated with finite element method (FEM). The result indicates that the potential difference becomes higher with the decrease of the distance between the helicopter and transmission line. Considering the discharge energy and the guarantee of the persons’ safety, the safety distance is determined as d≥15 m.
基金This project is sponsored by the funding of CAS Pioneer Hundred Talents Program.
文摘At present,substantial scientific research achievements have been made in the research on landslide occurrence,movement mechanism,mitigation measures,and structural stability during tunnel excavation.However,the interaction mechanism of a tunnel under-traversing a slope body with potential landslides is still not well understood.Based on the field data provided by previous investigations in the study area,six sets of 1:100 laboratory experiment model tests were conducted to study the stability of the landslide-prone zone of the slope body with an under-traversing tunnel.The selected distances between the tunnel and the sliding surface are 1.5,3,and 5 times of the tunnel diameter,respectively.The experiment results show the interaction between the landslide-prone zone and the tunnel,elucidating the effect of potential landslides during the tunnel excavation process and the reaction of the landslide slip on the tunnel structure.Several conclusions are obtained:①During the process of tunnel excavation,the vertical displacement of the tunnel vault decreases with the increase of the buried depth.②The vertical displacement of the sliding surface increases with the increase of the buried depth of the tunnel.The horizontal displacement of sliding surface decreases with the increase of the buried depth.③After the occurrence of a rainfall-induced landslide,the vertical displacement of the tunnel vault in the 1.5-diameter-distance case is 57.29%greater than that in the 3.0-dismeter-distance case.④For a two-cave tunnel,it is suggested that the cave farther from the landslide toe should be firstly excavated since it may generate less structural deformation.
文摘The net distance between the Xuetangwan interchange and the Huangshi tunnel exit of the Kaiyun expressway(Jiangkou-Yunyang-Longgang section)is used as an example in this paper.This paper analyses the problems in the safety distance between expressway tunnel and interchange under multi tunnel,and proposes safety distance measures between expressway tunnel and interchange under multi tunnel,based on the current safety distance standard between expressway tunnel and interchange under multi tunnel.
基金The National Key Technology R&D Program of China during the 10th Five-Year Plan Period(No.2005BA41B11)the National Natural Science Foundation of China(No.50578003)
文摘A new emergency evacuation car-following model (EECM) is proposed. The model aims to capture the main characteristics of traffic flow and driver behavior under an emergency evacuation, and it is developed on the basis of minimum safety distances with parts of the drivers' abnormal behavior in a panic emergency situation. A thorough questionnaire survey is undertaken among drivers of different ages. Based on the results from the survey, a safety-distance car-following model is formulated by taking into account two new parameters: a differential distributing coefficient and a driver' s experiential decision coefficient, which are used to reflect variations of driving behaviors under an emergency evacuation situation when compared with regular conditions. The formulation and derivation of the new model, as well as its properties and applicability are discussed. A case study is presented to compare the car-following trajectories using observed data under regular peak-hour traffic conditions and theoretical EECM results. The results indicate the consistency of the analysis of assumptions on the EECM and observations.
文摘In this paper, intrinsic safety and positive security distance control for an up/down elevator which extracts the materials from an underground coal mine is approached. For a better understanding of intrinsic safety and positive security, the first part of the paper describes the potential risk the workers are facing while working in dangerous environments like coal mining with “grisou” atmospheres and what the conditions of an unfortunate event to take place are. We presented the diagram and working principle for intrinsic safety equipment used in potential explosive areas based on which we modeled and simulated the intrinsic and positive security distance control in order to get a software solution for it. We created an algorithm and simulated the process in Matlab Simulink. The simulation results done in Matlab Simulink were then entered into a Moeller PLC using a ladder-type programming language. For protection against explosive atmospheres, the PLC is inserted into a metal housing with intrinsic protection and Positive Security.
基金Nova Trading Company from Torun and Rywal-RHC Company from Lublin for the financial support owing to which it was possible to perform the research study and tests presented in the compilation.
文摘The friction drive elevators the influence of the braking distance has very high significance to meet certain safety regulations and comfort.During the emergency braking the delay for the system a frame and a cabin should be within the range from 0.2 to 9.81 m/s~2.However,there are no specialist literatures regarding the issues connected with emergency braking of elevating devices either.The results of the own empirical research work are presented regarding the influence of design changes on the working parameters of the friction drive elevator gears.ASG100,KB 160,PP16,PR2000UD and CHP2000 types of safety progressive gears are analyzed.ASG100,KB 160,PP16,PR2000UD type progressive gears are already produced by European manufacturers.CHP2000 type gears are established as the alternative option for the already existing solutions.The unique cam system has been used in the CHP 2000 gears.The cam leverage gives the chance to unblock,in a very easy way,the clamed gears after braking.Thus,it is a key aspect to perform laboratory tests over the braking process of a newly created solution.The proper value of the braking distance has a significant influence on the value of delay in terms of binding standards.The influence of loading on the effective braking distance and the value of the falling elevator cabin speed are analyzed and the results are presented.The results presented are interesting from lift devices operation and a new model of CHP 2000progressive gear point of view.
基金The National Natural Science Foundation of China(No.51478114)
文摘To study the influence of rainfall on pavement skid-resistance performance and driving safety,the water film thickness(WFT)concept considering the longitudinal and transverse slopes of the pavement was utilized based on the total discharge formulation and turbulence theory of slope flow.Using experimental data measured using the British pendulum test under varying WFT levels,a model for calculating the skid resistance,namely the British pendulum number(BPN),was formulated and used to quantitatively evaluate the effects of rainfall intensity,transverse,and longitudinal slopes on the computed BPN.The study results reveal that skid resistance is linearly proportional to the pavement transverse slope and inversely proportional to the rainfall intensity and the pavement longitudinal slope.In particular,rainfall intensity,along with pavement texture depth,exhibited a significant impact on the tire-pavement friction and skid-resistance performance.The results further indicate that driving safety under wet weather is predominantly governed by skid resistance and visibility.The BPN and sideway force coefficient(SFC60)values for new asphalt pavements under different rainfall intensities are provided along with some modification to the stopping sight distance(SSD)criteria.Safe driving speed limits are also determined using a safe-driving model to develop the appropriate speed limit strategies.The overall study results provide some insights,methodology approach,and reference data for the evaluation of pavement skid-resistance performance and driving safety conditions under different pavement slopes and rainfall intensities.
基金National Natural Science Foundation of China(No.61471289)Natural Science Foundation of Shaanxi Province of China(No.2015JM5189)。
文摘This paper presents a method using range deception jamming to evaluate the safety performance of the autonomous vehicle with millimetre wave(MMW)radar.The working principle of this method is described.Combined with a waveform edition software,an experimental platform is developed to generate a deceptive signal that contains false distance information.According to related theories and its principle,the configuration parameters of the experimental setup are calculated and configured.The MMW radar of evaluated vehicle should identify an objective when it receives the deceptive signal from the experimental setup.Even if no obstacle,the evaluated vehicle can immediately brake in order that its braking distance is measured.The experimental results show that the proposed method can meet the requirements of the safety performance evaluation for the autonomous vehicle with MMW radar,and it also overcomes some deficiencies of previous methods.
基金the National Natural Science Foundation of China(No.51278429)the Key Laboratory of Road and Traffic Engineering of the Ministry of Education,Tongji University(No.K201207)the Program for New Century Excellent Talents in University(No.NCET-13-0977)
文摘Gipps' model, a well-known safe distance car-following model, has a very strict restriction on the car-following behavior that the following vehicle has to maintain the exact safe distance to the leading vehicle to avoid rear crash. However, this restriction is not consistent with the real traffic condition. Due to that, an enhanced safe distance car-following model is proposed first, and then calibrated and evaluated using the field data. Furthermore, the simulation is conducted to analyze the characteristics of the new model. The results of evaluation and simulation illustrate that the proposed model has higher simulation accuracy than the original Gipps' model, and can reproduce the stable flow and shock wave phenomena that are very common in real traffic.Moreover, the simulation results also prove that the enhanced model can better stabilize the traffic flow than Gipps' model.
文摘Unidirectional two-lane freeway is a typical and the simplest form of freeway. The traffic flow char- acteristics including safety condition on two-lane freeway is of great significance in planning, design, and manage- ment of a freeway. Many previous traffic flow models are able to figure out flow characteristics such as speed, den- sity, delay, and so forth. These models, however, have great difficulty in reflecting safety condition of vehicles. Besides, for the cellular automation, one of the most widely used microscopic traffic simulation models, its discreteness in both time and space can possibly cause inaccuracy or big errors in simulation results. In this paper, a micro-simula- tion model of two-lane freeway vehicles is proposed to evaluate characteristics of traffic flow, including safety condition. The model is also discrete in time but continu- ous in space, and it divides drivers into several groups on the basis of their preferences for overtaking, which makes the simulation more aligned with real situations. Partial test is conducted in this study and results of delay, speed, volume, and density indicate the preliminary validity of our model, based on which the proposed safety coefficient evaluates safety condition under different flow levels. It is found that the results of this evaluation coincide with daily experience of drivers, providing ground for effectiveness of the safety coefficient.