期刊文献+
共找到15,380篇文章
< 1 2 250 >
每页显示 20 50 100
Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources 被引量:2
1
作者 Peng Jiang Guanhan Zhao +4 位作者 Hao Zhang Tuo Ji Liwen Mu Xiaohua Lu Jiahua Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第6期1068-1078,共11页
Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but a... Acetylene is produced from the reaction between calcium carbide(CaC_(2))and water,while the production of CaC_(2) generates significant amount of carbon dioxide not only because it is an energy-intensive process but also the raw material for CaC_(2) synthesis is from coal.Here,a comprehensive biomass-to-acetylene process was constructed that integrated several units including biomass pyrolysis,oxygen-thermal CaC_(2) fabrication and calcium looping.For comparison,a coal-to-acetylene process was also established by using coal as feedstock.The carbon efficiency,energy efficiency and environmental impacts of the bio-based calcium carbide acetylene(BCCA)and coal-based calcium carbide acetylene(CCCA)processes were systematically analyzed.Moreover,the environmental impacts were further evaluated by applying thermal integration at system level and energy substitution in CaC_(2) furnace.Even though the BCCA process showed lower carbon efficiency and energy efficiency than that of the CCCA process,life cycle assessment demonstrated the BCCA(1.873 kgCO_(2eq) kg-prod^(-1))a lower carbon footprint process which is 0.366 kgCO_(2eq) kg-prod^(-1) lower compared to the CCCA process.With sustainable energy(biomass power)substitution in CaC_(2) furnace,an even lower GWP value of 1.377 kgCO_(2eq) kg-prod^(-1) can be achieved in BCCA process.This work performed a systematic analysis on integrating biomass into industrial acetylene production,and revealed the positive role of biomass as raw material(carbon)and energy supplier. 展开更多
关键词 Biomass pyrolysis CO_(2)mitigation Calcium carbide ACETYLENE Calcium loop
下载PDF
Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface
2
作者 Xiaoyu Shi Chongxiao Guo +4 位作者 Jiamiao Ni Songsong Yao Liqiang Wang Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1858-1864,共7页
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine... The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications. 展开更多
关键词 titanium carbide GRAPHITE molten salt kinetic analysis
下载PDF
Spark Plasma Sintering of Boron Carbide Using Ti_(3)SiC_(2) as a Sintering Additive
3
作者 Hülya Biçer Mustafa Tuncer +3 位作者 Hasan Göçmez Iurii Bogomol Valerii Kolesnichenko Andrey Ragulya 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期645-650,共6页
Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide... Boron carbide has unique properties for wide application possibilities;however,poor sinterability limits its applications.One approach to overcome this limitation is the addition of secondary phases into boron carbide.Boron carbide based composite ceramics are produced by the direct addition of secondary phases into the structure or via reactive sintering using a sintering additive.The present study investigated the effect of Ti_(3)SiC_(2) addition to boron carbide by reactive spark plasma sintering in the range of 1700-1900℃.Ti_(3)SiC_(2) phase decomposed at high temperatures and reacted with B4C to form secondary phases of TiB2 and SiC.The results demonstrated that the increase of Ti_(3)SiC_(2) addition(up to 15 vol%)effectively promoted the densification of B4C and yielded higher hardness.However,as the amount of Ti_(3)SiC_(2) increased further,the formation of microstructural inhomogeneity and agglomeration of secondary phases caused a decrease in hardness. 展开更多
关键词 reactive sintering SPS boron carbide MAX phase
下载PDF
Synthesis methods and powder quality of titanium monocarbide
4
作者 Maoqiao Xiang Wenjun Ding +1 位作者 Qinghua Dong Qingshan Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期10-18,共9页
Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of hig... Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of high-quality TiC powders with low cost and high efficiency is crucial for industrial applications;however major challenges face its realization.Herein,the methods for synthesizing TiC powders based on a reaction system are reviewed.This analysis is focused on the underlying mechanisms by which synthesis methods affect the quality of powders.Notably,strategies for improving the synthesis of highquality powders are analyzed from the perspective of enhancing heat and mass transfer processes.Furthermore,the critical issues,challenges,and development trends of the synthesis technology and application of high-quality TiC powder are discussed. 展开更多
关键词 Titanium carbide Synthesis methods Reaction engineering Reaction kinetics Powder technology
下载PDF
Research Progress of High Entropy Carbides
5
作者 QIN Ying DU Zhanyuan +1 位作者 LIU Xinzhuang YU Jinghua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1440-1448,共9页
High entropy carbides (HECds) are multi-component carbides consisting of transition metal carbides.HECds are generally composed of five or more metal cations of the equal or near-equal substances,obtaining a single cr... High entropy carbides (HECds) are multi-component carbides consisting of transition metal carbides.HECds are generally composed of five or more metal cations of the equal or near-equal substances,obtaining a single crystal structure.HECds have great potentials for future applications due to excellent mechanical,antioxidant and thermal properties.Due to their complex crystal structures and lattice distortion,computer simulations are widely used to efficiently associate the properties of HECds with the corresponding microstructures.In response to the development of HECds,this article provides an overview of the basic design,preparation process and properties of HECds. 展开更多
关键词 high entropy carbides(HECds) computer simulation PROCESSING PROPERTIES
下载PDF
Effect of Sintering Temperature on the Microstructure and Mechanical Properties of Nanocrystalline Cemented Carbide
6
作者 陈先富 刘颖 +1 位作者 YE Jinwen WANG Lu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期664-672,共9页
WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravi... WC-Co nanocrystalline nitrogen-containing cemented carbides were prepared by vacuum sintering and low pressure sintering.The sintering processes of Cr_(2)(C,N)doped nano WC-Co powders were studied by using thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC).The effect of sintering temperature on the microstructure and mechanical properties of nanocrystalline cemented carbide was studied by scanning electron microscope(SEM),high resolution transmission electron microscope(HRTEM)and mechanical property test.The results showed that the nano WC grains began to grow in the solid phase sintering stage.A high-performance nano-nitrogen-containing cemented carbide with uniform microstructure and good interfacial bonding can be obtained by increasing the sintering temperature to 1380℃.It has a transverse rupture strength(TRS)of 5057 MPa and a hardness of 1956 HV30. 展开更多
关键词 nano nitrogen cemented carbide sintering temperature MICROSTRUCTURE mechanical properties
下载PDF
Recent Advances in Interface Modification of Cu/graphite Composites and Layered Ternary Carbides of Modified Layer Candidate
7
作者 WEI Hongming LI Mingchao +4 位作者 LI Xiaoya ZHAN Wenyi LI Feiyang DAI Yanzhang ZOU Jianpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1061-1072,共12页
We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-mo... We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites. 展开更多
关键词 Cu/graphite composites interfacial bonding surface modification WETTABILITY layered ternary carbides
下载PDF
“Blocking and rebalance”mechanism-guided design strategies of bimetallic doped 2D a-phosphorus carbide as efficient catalysts for N_(2) electroreduction
8
作者 Cheng He Jianglong Ma +1 位作者 Shen Xi Wenxue Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期68-78,I0003,共12页
Compared to single atom catalysts(SACs),the introduction of dual atom catalysts(DACs)has a significantly positive effect on improving the efficiency in the electrocatalytic nitrogen reduction reaction(NRR)which provid... Compared to single atom catalysts(SACs),the introduction of dual atom catalysts(DACs)has a significantly positive effect on improving the efficiency in the electrocatalytic nitrogen reduction reaction(NRR)which provides an environmental alternative to the Haber-Bosch process.However,the research on the mechanism and strategy of designing bimetallic combinations for better performance is still in its early stages.Herein,based on"blocking and rebalance"mechanism,45 combinations of bimetallic pair dopedα-phosphorus carbide(TM_(A)TM_(B)@PC)are investigated as efficient NRR catalysts through density functional theory and machine learning method.After a multi-step screening,the combinations of TiV,TiFe,MnMo,and FeW exhibit highly efficient catalytic performance with significantly lower limiting potentials(-0.17,-0.18,-0.14,and-0.30 V,respectively).Excitingly,the limiting potential for CrMo and CrW combinations is 0 V,which are considered to be extremely suitable for the NRR process.The mechanism of"blocking and rebalance"is revealed by the exploration of charge transfer for phosphorus atoms in electron blocking areas.Moreover,the descriptorφis proposed with machine learning,which provides design strategies and accurate prediction for finding efficient DACs.This work not only offers promising catalysts TM_(A)TM_(B)@PC for NRR process but also provides design strategies by presenting the descriptorφ. 展开更多
关键词 DACs Nitrogen reduction reaction 2D a-phosphorus carbide Inherent attributes Machine learning
下载PDF
Multiscale confinement nitridation in molybdenum carbide for efficient hydrogen production
9
作者 Liming Dai Chenchen Fang +10 位作者 Xiaoyuan Zhang Xuefeng Xu Xuanxuan Chen Xinyue Zong Xueming Hu Wenyao Zhang Liang Xue Pan Xiong Yongsheng Fu Jingwen Sun Junwu Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期61-69,共9页
The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inhe... The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond. 展开更多
关键词 Molybdenum carbide Hydrogen evolution reaction Multiscale confinement synthesis Valence band modulation Nitrogen doping
下载PDF
Quasi-plastic deformation mechanisms and inverse Hall-Petch relationship in nanocrystalline boron carbide under compression
10
作者 岳珍 李君 +1 位作者 刘立胜 梅海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期405-413,共9页
Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes usi... Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes using molecular dynamics simulations with a machine-learning force field.The results reveal quasi-plastic deformation mechanisms in nB_(4)C:GB sliding,intergranular amorphization and intragranular amorphization.GB sliding arises from the presence of soft GBs,leading to intergranular amorphization.Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs,and finally causes structural failure.Furthermore,nB_(4)C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism.A higher strain rate in nB_(4)C often leads to a higher yield strength,following a 2/3 power relationship.These deformation mechanisms are critical for the design of ceramics with superior mechanical properties. 展开更多
关键词 nanocrystalline boron carbide compression grain boundary sliding amorphization inverse Hall–Petch behavior
下载PDF
Preparation and Analysis of Carbon Fiber-Silicon Carbide Thermally Conductive Asphalt Concrete
11
作者 Zhiyong Yang Enjie Hu +3 位作者 Lei Xi Zhi Chen Feng Xiong Chuanhai Zhan 《Fluid Dynamics & Materials Processing》 EI 2024年第4期705-723,共19页
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min... An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass. 展开更多
关键词 Carbon fiber silicon carbide thermally conductive asphalt concrete road performance electrothermal snow melting
下载PDF
Comparative Study on Microstructure and Mechanical Properties of Coarse-grained WC-based Cemented Carbides Sintered with Ultrafine WC or (W+C) as Additives
12
作者 于淞百 闵凡路 +6 位作者 LI De NOUDEM Guillaume Jacques ZHANG Hailong MA Jichang ZHAO Kui YAO Zhanhu 张建峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期399-409,共11页
The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.O... The effects of ultrafine WC(WC_(UF),0.5μm) or W(1μm) and C(0.3μm)(W+C)_(UF) additives on the densification,microstructure and mechanical properties of coarse-grained cemented carbides were compared systematically.Overall,the cemented carbides with WC_(UF)/(W+C)_(UF) additives are almost fully densification to be higher than 99%,and the average grain size is kept above 2.8μm.The WC_(UF) additive assists grains to(truncated)trigonal prism shape by two dimensional(2D) growth,whereas the(W+C)_(UF) additive assists grains to rounded shape by three dimensional(3D) growth,lowers WC contiguity and increases face-centered-cubic Co.The hardness and bending strength of(75WC_(C)-15WC_(UF))-10Co are 86.6 HRA and 2 272 MPa,respectively,both higher than those of(75WC_(C)-15(W+C)_(UF))-10Co,which could be ascribed to the enhanced densification and unblemished grains.However,the fracture toughness of the(75WC_(C)-15(W+C)_(UF))-10Co is 23.5 MPa·m^(1/2),higher than that of the(75WC_(C)-15WC_(UF))-10Co due to the uniform WC-Co structure and flexible binder phase. 展开更多
关键词 coarse-grained WC-based cemented carbide ultrafine WC ultrafine(W+C) microstructure mechanical properties
下载PDF
Pulsed laser interference patterning of transition-metal carbides for stable alkaline water electrolysis kinetics
13
作者 Yewon Oh Jayaraman Theerthagiri +3 位作者 Ahreum Min Cheol Joo Moon Yiseul Yu Myong Yong Choi 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期65-80,共16页
We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed ... We investigated the role of metal atomization and solvent decomposition into reductive species and carbon clusters in the phase formation of transition-metal carbides(TMCs;namely,Co_(3)C,Fe_(3)C,TiC,and MoC)by pulsed laser ablation of Co,Fe,Ti,and Mo metals in acetone.The interaction between carbon s-p-orbitals and metal d-orbitals causes a redistribution of valence structure through charge transfer,leading to the formation of surface defects as observed by X-ray photoelectron spectroscopy.These defects influence the evolved TMCs,making them effective for hydrogen and oxygen evolution reactions(HER and OER)in an alkaline medium.Co_(3)C with more oxygen affinity promoted CoO(OH)intermediates,and the electrochemical surface oxidation to Co_(3)O_(4)was captured via in situ/operando electrochemical Raman probes,increasing the number of active sites for OER activity.MoC with more d-vacancies exhibits strong hydrogen binding,promoting HER kinetics,whereas Fe_(3)C and TiC with more defect states to trap charge carriers may hinder both OER and HER activities.The results show that the assembled membrane-less electrolyzer with Co_(3)C∥Co_(3)C and MoC∥MoC electrodes requires~2.01 and 1.99 V,respectively,to deliver a 10 mA cm−2 with excellent electrochemical and structural stability.In addition,the ascertained pulsed laser synthesis mechanism and unit-cell packing relations will open up sustainable pathways for obtaining highly stable electrocatalysts for electrolyzers. 展开更多
关键词 ACETONE H_(2)and O_(2)evolution reactions pulsed laser ablation surface defects transition-metal carbides water electrolyzer
下载PDF
Influence of Carbon Content on Element Diffusion in Silicon Carbide-Based TRISO Composite Fuel
14
作者 Xiaojiao Wang Libing Zhu +1 位作者 Yan You Zhaoquan Zhang 《Journal of Electronic Research and Application》 2024年第5期80-88,共9页
The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,... The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,leading to the destruction of the coating layers.Investigating how carbon content affects element diffusion in silicon carbide-based TRISO composite fuel is of great significance for predicting reactor safety.In this study,silicon carbide-based TRISO composite fuels with different carbon contents were prepared by adding varying amounts of phenolic resin to the silicon carbide matrix.X-ray Diffraction(XRD)and Scanning Electron Microscopy(SEM)were employed to characterize the phase composition,morphology,and microstructure of the composite fuels.The elemental content in each coating layer of TRISO was quantified using Energy-Dispersive X-ray Spectroscopy(EDS).The results demonstrated that the addition of phenolic resin promoted the uniform distribution of sintering aids in the silicon carbide matrix.The atomic percentage(at.%)of aluminum(Al)in the pyrolytic carbon layer of the TRISO particles reached its lowest value of 0.55%when the phenolic resin addition was 1%.This is because the addition of phenolic resin caused the Al and silicon(Si)in the matrix to preferentially react with the carbon in the phenolic resin to form a metastable liquid phase,rather than preferentially consuming the pyrolytic carbon in the outer coating layer of the TRISO particles.The findings suggest that carbon addition through phenolic resin incorporation can effectively mitigate the deleterious reactions between the TRISO coating layers and sintering aids,thereby enhancing the durability and safety of silicon carbide-based TRISO composite fuels. 展开更多
关键词 Silicon carbide TRISO Composite fuel Diffusion behavior Carbon content
下载PDF
Research on Silicon Carbide Dispersion-Reinforced Hypereutectic Aluminum-Silicon Electronic Packaging Materials
15
作者 Ruixi Guo Yunhao Hua Tianze Jia 《Journal of Electronic Research and Application》 2024年第2期86-94,共9页
The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon elect... The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties. 展开更多
关键词 Silicon carbide Electronic packaging materials Powder metallurgy Mechanical properties Composite materials
下载PDF
Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel 被引量:5
16
作者 Peng Han Zhipeng Liu +4 位作者 Zhenjia Xie Hua Wang Yaohui Jin Xuelin Wang Chengjia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1329-1337,共9页
This study investigated the influence of band microstructure induced by centerline segregation on carbide precipitation behavior and toughness in an 80 mm-thick 1 GPa low-carbon low-alloy steel plate.The quarter-thick... This study investigated the influence of band microstructure induced by centerline segregation on carbide precipitation behavior and toughness in an 80 mm-thick 1 GPa low-carbon low-alloy steel plate.The quarter-thickness(1/4t)and half-thickness(1/2t)regions of the plate exhibited similar ductility and toughness after quenching.After tempering,the 1/4t region exhibited~50%and~25%enhancements in both the total elongation and low-temperature toughness at-40°C,respectively,without a decrease in yield strength,whereas the toughness of the 1/2t region decreased by~46%.After quenching,both the 1/4t and 1/2t regions exhibited lower bainite and lath martensite concentrations,but only the 1/2t region exhibited microstructure bands.Moreover,the tempered 1/4t region featured uniformly dispersed short rod-like M_(23)C_(6)carbides,and spherical MC precipitates with diameters of~20–100 nm and<20 nm,respectively.The uniformly dispersed nanosized M_(23)C_(6)carbides and MC precipitates contributed to the balance of high strength and high toughness.The band microstructure of the tempered 1/2t region featured a high density of large needle-like M3C carbides.The length and width of the large M3C carbides were~200–500 nm and~20–50 nm,respectively.Fractography analysis revealed that the high density of large carbides led to delamination cleavage fracture,which significantly deteriorated toughness. 展开更多
关键词 band microstructure carbides TOUGHNESS heavy gauge steel centerline segregation
下载PDF
Application of silicon carbide temperature monitors in 49-2 swimming-pool test reactor 被引量:1
17
作者 宁广胜 张利民 +6 位作者 钟巍华 王绳鸿 刘心语 汪定平 何安平 刘健 张长义 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期97-101,共5页
High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10... High purity SiC crystal was used as a passive monitor to measure neutron irradiation temperature in the 49-2 research reactor.The SiC monitors were irradiated with fast neutrons at elevated temperatures to 3.2×10^(20)n/cm^(2).The isochronal and isothermal annealing behaviors of the irradiated SiC were investigated by x-ray diffraction and four-point probe techniques.Invisible point defects and defect clusters are found to be the dominating defect types in the neutron-irradiated SiC.The amount of defect recovery in SiC reaches a maximum value after isothermal annealing for 30 min.Based on the annealing temperature dependences of both lattice swelling and material resistivity,the irradiation temperature of the SiC monitors is determined to be~410℃,which is much higher than the thermocouple temperature of 275℃ recorded during neutron irradiation.The possible reasons for the difference are carefully discussed. 展开更多
关键词 silicon carbide irradiation temperature monitor research reactor
下载PDF
Mesoporous molybdenum carbide for greatly enhanced hydrogen evolution at high current density and its mechanism studies 被引量:1
18
作者 Juan Li Chun Tang +2 位作者 Heng Zhang Zhuo Zou Chang Ming Li 《Materials Reports(Energy)》 2023年第3期48-54,共7页
Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latt... Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latter is highly demanding in efficient mass-production of hydrogen.A SiO_(2) nanospheres template-synthesis is used to prepare mesoporous molybdenum carbide nanocrystals-embedded nitrogen-doped carbon foams(mp-Mo_(2)C/NC).The material shows much more excellent catalytic activity than the non-etched Mo_(2)C/NC toward hydrogen evolution reaction(HER)in acidic medium.More interestingly mp-Mo_(2)C/NC still has larger overpotential than Pt/C at lower current densities,but possess remarkably smaller overpotential than the latter at higher current densities for much better electrocatalytic performance.An approach is developed to investigate the electrode kinetics by Tafel plots,especially with eliminating the diffusion effect,indicating that Pt/C and mp-Mo_(2)C/NC display different reaction mechanisms.At low current densities the former presents reversible reaction,while the latter shows mixed electrochemical polarization/reversible electrode process.In the region of higher current densities,the former becomes totally gas-diffusion controlled with large overpotential,while the latter can still retain an electrode polarization process for much lower overpotential at the same current density.Result endorses that the meso-porously structured mp-Mo_(2)C/NC plays a critical role in avoiding gas diffusion control-resulting large overpotential at high current densities.This work holds great potential for an inexpensive catalyst better than Pt/C in practical applications of mass-production hydrogen at high current densities,while clearly shedding fundamental lights on designs of rational HER catalysts for the uses at high current densities. 展开更多
关键词 Porous molybdenum carbides Tafel analysis Hydrogen evolution Electrode kinetics Diffusion effect on Tafel behaviors
下载PDF
Carbides Formation in MarM247 Directional Solidified during Stress-Rupture Test at High Temperature
19
作者 Daniel Moreno Itzik Mizrahi +3 位作者 Yuri Lipkin Vasiliy Zevin Elinor Itzhak Zion Harush 《Journal of Minerals and Materials Characterization and Engineering》 2023年第5期131-142,共12页
In our study, stress-rupture tests were conducted at elevated temperatures to examine the impact of high temperature on MarM247 LC (low carbon). Our main objective was to investigate the alterations in the microstruct... In our study, stress-rupture tests were conducted at elevated temperatures to examine the impact of high temperature on MarM247 LC (low carbon). Our main objective was to investigate the alterations in the microstructure, particularly the carbon precipitation, during long-term stress-rupture tests. It was observed that cracks developed near the sample neck, following the path of the carbides and the gamma matrix, rather than occurring in the gamma-gamma prime eutectic. This occurred despite the formation of carbides because of prolonged exposure to high temperature and load, and the crack propagation did not follow that path. Based on these findings, we suggest that a reduction in the carbon content of Mar-M247 LC can enhance the sample's lifespan when subjected to temperatures below 760˚C and a stress of 690 MPa. 展开更多
关键词 MarM247 carbides STRESS-RUPTURE High-Temperature CRACK-PROPAGATION
下载PDF
Speeding up the prediction of C-O cleavage through bond valence and charge on iron carbides
20
作者 Yurong He Kuan Lu +7 位作者 Jinjia Liu Xinhua Gao Xiaotong Liu Yongwang Li Chunfang Huo James P.Lewis Xiaodong Wen Ning Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期2014-2024,共11页
The activation of CO on iron-based materials is a key elementary reaction for many chemical processes.We investigate CO adsorption and dissociation on a series of Fe,Fe_(3)C,Fe_(5)C_(2),and Fe_(2)C catalysts through d... The activation of CO on iron-based materials is a key elementary reaction for many chemical processes.We investigate CO adsorption and dissociation on a series of Fe,Fe_(3)C,Fe_(5)C_(2),and Fe_(2)C catalysts through density functional theory calculations.We detect dramatically different performances for CO adsorption and activation on diverse surfaces and sites.The activation of CO is dependent on the local coordination of the molecule to the surface and on the bulk phase of the underlying catalyst.The bulk properties and the different local bonding environments lead to varying interactions between the adsorbed CO and the surface and thus yielding different activation levels of the C-O bond.We also examine the prediction of CO adsorption on different types of Fe-based catalysts by machine learning through linear regression models.We combine the features originating from surfaces and bulk phases to enhance the prediction of the activation energies and perform eight different linear regressions utilizing the feature engineering of polynomial representations.Among them,a ridge linear regression model with2nd-degree polynomial feature generation predicted the best CO activation energy with a mean absolute error of 0.269 eV. 展开更多
关键词 ADSORPTION CO activation iron carbides density functional theory
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部