In order to investigate the impact of U-ore on organic matter maturation and isotopic fractionation,we designed hydrous pyrolysis experiments on Type-II kerogen samples,supposing that the water and water–mineral inte...In order to investigate the impact of U-ore on organic matter maturation and isotopic fractionation,we designed hydrous pyrolysis experiments on Type-II kerogen samples,supposing that the water and water–mineral interaction play a role.U-ore was set as the variable for comparison.Meanwhile,anhydrous pyrolysis under the same conditions was carried out as the control experiments.The determination of liquid products indicates that the presence of water and minerals obviously enhanced the yields of C(15+) and the amounts of hydrocarbon and nonhydrocarbon gases.Such results may be attributed to waterorganic matter reaction in the high-temperature system,which can provide additional hydrogen and oxygen for the generation of gas and liquid products from organic matter.It is found that δD values of hydrocarbon gases generated in both hydrous pyrolysis experiments are much lower than those in anhydrous pyrolysis.What is more,δD values are lower in the hydrous pyrolysis with uranium ore.Therefore,we can infer that water-derived hydrogen played a significant role during the kerogen thermal evolution and the hydrocarbon generation in our experiments.Isotopic exchange was facilitated by the reversible equilibration between reaction intermediaries with hydrogen under hydrothermal conditions with uranium ore.Carbon isotopic fractionations of hydrocarbon gases were somehow affected by the presence of water and the uranium ore.The increased level of i-C4/n-C4ratios for gas products in hydrous pyrolysis implied the carbocation mechanism for water-kerogen reactions.展开更多
文摘In order to investigate the impact of U-ore on organic matter maturation and isotopic fractionation,we designed hydrous pyrolysis experiments on Type-II kerogen samples,supposing that the water and water–mineral interaction play a role.U-ore was set as the variable for comparison.Meanwhile,anhydrous pyrolysis under the same conditions was carried out as the control experiments.The determination of liquid products indicates that the presence of water and minerals obviously enhanced the yields of C(15+) and the amounts of hydrocarbon and nonhydrocarbon gases.Such results may be attributed to waterorganic matter reaction in the high-temperature system,which can provide additional hydrogen and oxygen for the generation of gas and liquid products from organic matter.It is found that δD values of hydrocarbon gases generated in both hydrous pyrolysis experiments are much lower than those in anhydrous pyrolysis.What is more,δD values are lower in the hydrous pyrolysis with uranium ore.Therefore,we can infer that water-derived hydrogen played a significant role during the kerogen thermal evolution and the hydrocarbon generation in our experiments.Isotopic exchange was facilitated by the reversible equilibration between reaction intermediaries with hydrogen under hydrothermal conditions with uranium ore.Carbon isotopic fractionations of hydrocarbon gases were somehow affected by the presence of water and the uranium ore.The increased level of i-C4/n-C4ratios for gas products in hydrous pyrolysis implied the carbocation mechanism for water-kerogen reactions.