This article summarized three main kinds of metabolic pathways related to the synthesis of aroma compounds in plants, concluded the roles and expres- sion patterns of key enzyme genes catalyzing the formation of major...This article summarized three main kinds of metabolic pathways related to the synthesis of aroma compounds in plants, concluded the roles and expres- sion patterns of key enzyme genes catalyzing the formation of major intermediate products in phenylpropanoid metabolic pathway, isoprene metabolic pathway and alkaloid biosynthetic pathway respectively, highlighted the latest developments of these key enzyme genes in tobacco, and accordingly proposed that in-depth study at the protein level and analysis of metabolic network interaction should be carried out in tobacco besides the expression regulation and transgenic crop improvement at the genetic level. Based on the above analysis, further improvement of tobacco aroma quality through metabolic engineering and its application prospect in agricultural production were prospected.展开更多
Soybean is an important legume food crop,and its seeds are rich in nutrients,providing humans and animals with edible oil and protein feed.However,soybean is sensitive to water requirements,and drought is an important...Soybean is an important legume food crop,and its seeds are rich in nutrients,providing humans and animals with edible oil and protein feed.However,soybean is sensitive to water requirements,and drought is an important factor limiting soybean yield and quality.This study used Heinong 84(drought resistant variety)and Hefeng 46(intermediate variety)as tested varieties planted in chernozem,albic,and black soils.The effects of drought stress on the activities of key enzymes in carbon metabolism and photosynthetic characteristics of soybean were studied during the flowering stage,most sensitive to water.(1)The activities of SS-1,6PGDH,and G6PDH enzymes in soybean leaves first increased and then decreased under drought stress.The enzyme activity was the highest under moderate drought stress and weakest in the blank group.(2)Drought stress increased Phi2,PhiNO,and Fm in soybean leaves and reached the highest value under severe drought;with the increase in drought stress,PhiNPQ and Fv/Fm of soybean leaves gradually decreased,reaching the lowest under severe drought.(3)With the increase in drought stress,F0 and Fs of soybean leaves showed a single peak curve,and the maximum was at moderate drought.(4)Correlation analysis showed that F0 was greatly affected by varieties and soil types;Fs,F0,and Fm soil varieties had a great influence,and chlorophyll fluorescence parameters were affected differently under drought stress with different drought degrees.(5)Drought stress changed the agronomic traits and yield of soybean.With the increase of drought degree,plant height,node number of main stem,effective pod number,100-seed weight and total yield decreased continuously.(6)Drought stress affected the dry matter accumulation of soybean.With the increase of drought degree,the dry matter accumulation gradually decreased.Among them,the leaf was most seriously affected by drought,and SD decreased by about 55%compared with CK.Under the condition of black soil,the dry matter accumulation of soybean was least affected by drought.展开更多
Ciprofloxacin(CIP)is an antibiotic used to treat infections caused by bacteria.In this experiment,key enzymes and intracellular metabolites of Lactobacillus plantarum DNZ-4 was researched under CIP stress.The results ...Ciprofloxacin(CIP)is an antibiotic used to treat infections caused by bacteria.In this experiment,key enzymes and intracellular metabolites of Lactobacillus plantarum DNZ-4 was researched under CIP stress.The results showed that the activities of hexokinase,pyruvate kinase,β-galactosidase and Na^(+),K^(+)-ATPase after 1/2 minimum bacteriostatic concentration(MIC)CIP treatment were significantly decreased(P<0.01).Gas chromatography-mass spectrometry was used to analysis the changes of main metabolites in the cells and principal component analysis and partial least square model were constructed.The results indicated that CIP could cause changes in intracellular fatty acids,carbohydrates and amino acids,and the mechanism of amino acid metabolism under CIP stress was significantly inhibited.L.plantarum DNZ-4 made stress response to CIP by regulating the ratio of saturated fatty acids and unsaturated fats.This experiment revealed the changes of growth and metabolism mechanism of L.plantarum DNZ-4 under CIP stress,which help to provide technical means for the development of effective probiotics preparation products.展开更多
This study was conducted to elucidate the regulating mechanism of sodium nitroprussiate on seed germination and seedling growth of cherry tomato. After the treatment with different concentrations of sodium nitroprussi...This study was conducted to elucidate the regulating mechanism of sodium nitroprussiate on seed germination and seedling growth of cherry tomato. After the treatment with different concentrations of sodium nitroprusside, the effects on the metabolites and key enzyme activities in carbon-nitrogen metabolism of cherry tomato cuhivar Zhuyun as an experimental material were investigated. The results showed that from seed germination to seedling period, the contents of starch and total nitrogen decreased, but the contents of soluble sugar, reducing sugar, sucrose and soluble protein increased firstly and then decreased; and free amino acids content increased gradually. Sodium nitroprusside made the contents of starch, sucrose and free amino acids higher than CK. From seed germination to seedling period in cherry tomato, the activities of amylase, glutamine synthetase (GS) and sucrose phosphate synthase (SPS) decreased; the activities of nitrate reductase (NR) and glutamate synthase (GOGAT) increased at first and decreased then; and the CK and the 0.25 mmol/L sodium nitroprusside treatments exhibited de- creased sucrose synthase (SS) activity, and the trend was increasing at first and decreasing then after the treatment with 0.50 and 1.00 mmol/L sodium nitroprus- side. Sodium nitroprusside treatment improved amylase activity; and the carbon-nitrogen ratio of the CK increased at first and decreased then, while the values of other treatments tended to decrease. In addition, sodium nitroprusside did not affect seed germination potential and germination rate, but significantly improved biomass accumulation, root length and height of seedlings. These data suggest that sodium nitroprusside could affect the conversion of starch and sugar accumulation, delay the decomposition of total nitrogen and soluble protein, and achieve the effects of accelerating the accumulation of free amino acids, and promoting seed germination and seedling growth, and 0.50 mmol/L sodium nitroprusside has the best effect.展开更多
基金Supported by Special Fund for Basic Research and Operating Expenses of Central Nonprofit Research Institutes,the Institute of Crop Sciences,Chinese Academy of Agricultural Sciences"Terpene Synthase Gene Prediction and Structural Analysis in Nicotiana gossei"(2011011)
文摘This article summarized three main kinds of metabolic pathways related to the synthesis of aroma compounds in plants, concluded the roles and expres- sion patterns of key enzyme genes catalyzing the formation of major intermediate products in phenylpropanoid metabolic pathway, isoprene metabolic pathway and alkaloid biosynthetic pathway respectively, highlighted the latest developments of these key enzyme genes in tobacco, and accordingly proposed that in-depth study at the protein level and analysis of metabolic network interaction should be carried out in tobacco besides the expression regulation and transgenic crop improvement at the genetic level. Based on the above analysis, further improvement of tobacco aroma quality through metabolic engineering and its application prospect in agricultural production were prospected.
基金funded by the National Key R&D Program of China,Grant No.2018YFD1000903And funded by Natural Science Foundation of Heilongjiang Province of China,Grant No.LH2021C023.
文摘Soybean is an important legume food crop,and its seeds are rich in nutrients,providing humans and animals with edible oil and protein feed.However,soybean is sensitive to water requirements,and drought is an important factor limiting soybean yield and quality.This study used Heinong 84(drought resistant variety)and Hefeng 46(intermediate variety)as tested varieties planted in chernozem,albic,and black soils.The effects of drought stress on the activities of key enzymes in carbon metabolism and photosynthetic characteristics of soybean were studied during the flowering stage,most sensitive to water.(1)The activities of SS-1,6PGDH,and G6PDH enzymes in soybean leaves first increased and then decreased under drought stress.The enzyme activity was the highest under moderate drought stress and weakest in the blank group.(2)Drought stress increased Phi2,PhiNO,and Fm in soybean leaves and reached the highest value under severe drought;with the increase in drought stress,PhiNPQ and Fv/Fm of soybean leaves gradually decreased,reaching the lowest under severe drought.(3)With the increase in drought stress,F0 and Fs of soybean leaves showed a single peak curve,and the maximum was at moderate drought.(4)Correlation analysis showed that F0 was greatly affected by varieties and soil types;Fs,F0,and Fm soil varieties had a great influence,and chlorophyll fluorescence parameters were affected differently under drought stress with different drought degrees.(5)Drought stress changed the agronomic traits and yield of soybean.With the increase of drought degree,plant height,node number of main stem,effective pod number,100-seed weight and total yield decreased continuously.(6)Drought stress affected the dry matter accumulation of soybean.With the increase of drought degree,the dry matter accumulation gradually decreased.Among them,the leaf was most seriously affected by drought,and SD decreased by about 55%compared with CK.Under the condition of black soil,the dry matter accumulation of soybean was least affected by drought.
基金supported by the National Natural Science Foundation of China(Grant No.31671874)National Key Research and Development Project(2018YFD0502404)+3 种基金Natural Science Foundation of Heilongjiang Province of China(Grant No.C2018022)Academic Backbone Plan of Northeast Agricultural University(Grant No.18XG27)Research Fund for Key Laboratory of Dairy Science,Ministry of Education,Heilongjiang Province,China(2015KLDSOF-07)the Project of Young Innovative Talents of Colleges and Universities(UNPYSCT-2016149)。
文摘Ciprofloxacin(CIP)is an antibiotic used to treat infections caused by bacteria.In this experiment,key enzymes and intracellular metabolites of Lactobacillus plantarum DNZ-4 was researched under CIP stress.The results showed that the activities of hexokinase,pyruvate kinase,β-galactosidase and Na^(+),K^(+)-ATPase after 1/2 minimum bacteriostatic concentration(MIC)CIP treatment were significantly decreased(P<0.01).Gas chromatography-mass spectrometry was used to analysis the changes of main metabolites in the cells and principal component analysis and partial least square model were constructed.The results indicated that CIP could cause changes in intracellular fatty acids,carbohydrates and amino acids,and the mechanism of amino acid metabolism under CIP stress was significantly inhibited.L.plantarum DNZ-4 made stress response to CIP by regulating the ratio of saturated fatty acids and unsaturated fats.This experiment revealed the changes of growth and metabolism mechanism of L.plantarum DNZ-4 under CIP stress,which help to provide technical means for the development of effective probiotics preparation products.
基金Supported by National Natural Science Foundation of China(31660559)Scientific Research Project of Kunming University(XJZZ1604)Open Fund of Key Laboratory of Special Biological Resource Development and Utilization of Universities in Yunnan Province(GXKJ201615)
文摘This study was conducted to elucidate the regulating mechanism of sodium nitroprussiate on seed germination and seedling growth of cherry tomato. After the treatment with different concentrations of sodium nitroprusside, the effects on the metabolites and key enzyme activities in carbon-nitrogen metabolism of cherry tomato cuhivar Zhuyun as an experimental material were investigated. The results showed that from seed germination to seedling period, the contents of starch and total nitrogen decreased, but the contents of soluble sugar, reducing sugar, sucrose and soluble protein increased firstly and then decreased; and free amino acids content increased gradually. Sodium nitroprusside made the contents of starch, sucrose and free amino acids higher than CK. From seed germination to seedling period in cherry tomato, the activities of amylase, glutamine synthetase (GS) and sucrose phosphate synthase (SPS) decreased; the activities of nitrate reductase (NR) and glutamate synthase (GOGAT) increased at first and decreased then; and the CK and the 0.25 mmol/L sodium nitroprusside treatments exhibited de- creased sucrose synthase (SS) activity, and the trend was increasing at first and decreasing then after the treatment with 0.50 and 1.00 mmol/L sodium nitroprus- side. Sodium nitroprusside treatment improved amylase activity; and the carbon-nitrogen ratio of the CK increased at first and decreased then, while the values of other treatments tended to decrease. In addition, sodium nitroprusside did not affect seed germination potential and germination rate, but significantly improved biomass accumulation, root length and height of seedlings. These data suggest that sodium nitroprusside could affect the conversion of starch and sugar accumulation, delay the decomposition of total nitrogen and soluble protein, and achieve the effects of accelerating the accumulation of free amino acids, and promoting seed germination and seedling growth, and 0.50 mmol/L sodium nitroprusside has the best effect.