期刊文献+
共找到21,339篇文章
< 1 2 250 >
每页显示 20 50 100
Dietary sodium acetate and sodium butyrate improve high-carbohydrate diet utilization by regulating gut microbiota, liver lipid metabolism, oxidative stress, and inflammation in largemouth bass(Micropterus salmoides) 被引量:1
1
作者 Qiao Liu Liangshun Cheng +9 位作者 Maozhu Wang Lianfeng Shen Chengxian Zhang Jin Mu Yifan Hu Yihui Yang Kuo He Haoxiao Yan Liulan Zhao Song Yang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1704-1722,共19页
Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in large... Background Adequate level of carbohydrates in aquafeeds help to conserve protein and reduce cost. However, studies have indicated that high-carbohydrate(HC) diet disrupt the homeostasis of the gut–liver axis in largemouth bass, resulting in decreased intestinal acetate and butyrate level.Method Herein, we had concepted a set of feeding experiment to assess the effects of dietary sodium acetate(SA) and sodium butyrate(SB) on liver health and the intestinal microbiota in largemouth bass fed an HC diet. The experimental design comprised 5 isonitrogenous and isolipidic diets, including LC(9% starch), HC(18% starch), HCSA(18% starch;2 g/kg SA), HCSB(18% starch;2 g/kg SB), and HCSASB(18% starch;1 g/kg SA + 1 g/kg SB). Juvenile largemouth bass with an initial body weight of 7.00 ± 0.20 g were fed on these diets for 56 d.Results We found that dietary SA and SB reduced hepatic triglyceride accumulation by activating autophagy(ATG101, LC3B and TFEB), promoting lipolysis(CPT1α, HSL and AMPKα), and inhibiting adipogenesis(FAS, ACCA, SCD1 and PPARγ). In addition, SA and SB decreased oxidative stress in the liver(CAT, GPX1α and SOD1) by activating the Keap1-Nrf2 pathway. Meanwhile, SA and SB alleviated HC-induced inflammation by downregulating the expression of pro-inflammatory factors(IL-1β, COX2 and Hepcidin1) through the NF-κB pathway. Importantly, SA and SB increased the abundance of bacteria that produced acetic acid and butyrate(Clostridium_sensu_stricto_1). Combined with the KEGG analysis, the results showed that SA and SB enriched carbohydrate metabolism and amino acid metabolism pathways, thereby improving the utilization of carbohydrates. Pearson correlation analysis indicated that growth performance was closely related to hepatic lipid deposition, autophagy, antioxidant capacity, inflammation, and intestinal microbial composition.Conclusions In conclusion, dietary SA and SB can reduce hepatic lipid deposition;and alleviate oxidative stress and inflammation in largemouth bass fed on HC diet. These beneficial effects may be due to the altered composition of the gut microbiota caused by SA and SB. The improvement effects of SB were stronger than those associated with SA. 展开更多
关键词 High carbohydrate diet Intestinal microbiota Largemouth bass Lipid deposition Sodium acetate Sodium butyrate
下载PDF
The storage and utilization of carbohydrates in response to elevation mediated by tree organs in subtropical evergreen broad-leaved forests
2
作者 Bin Xu Xueli Jiang +4 位作者 Yingying Zong G.Geoff Wang Fusheng Chen Zhenyu Zhao Xiangmin Fang 《Forest Ecosystems》 SCIE CSCD 2024年第1期52-61,共10页
Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl... Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems. 展开更多
关键词 Nonstructural carbohydrates Structural carbohydrates ELEVATION Subtropical evergreen broad-leaved forests Tree organs
下载PDF
Advances in selective conversion of carbohydrates into 5-hydroxymethylfurfural
3
作者 Jie Liang Jianchun Jiang +4 位作者 Tingting Cai Chao Liu Jun Ye Xianhai Zeng Kui Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1384-1406,共23页
Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF pos... Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature. 展开更多
关键词 5-HYDROXYMETHYLFURFURAL BIOREFINERY SOLVENT SELECTIVITY carbohydrate
下载PDF
Serum tumor markers (carcinoembryonic antigen, carbohydrate antigen 19-9, carbohydrate antigen 72-4, carbohydrate antigen 24-2, ferritin) and gastric cancer prognosis correlation
4
作者 Jie-Wen Zhu Ling-Zhen Gong Qian-Wen Wang 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第9期2808-2814,共7页
BACKGROUND Gastric cancer is a kind of malignant tumor which is prevalent all over the world.Although some progress has been made in the treatment of gastric cancer,its prognosis is still not optimistic,so it is of gr... BACKGROUND Gastric cancer is a kind of malignant tumor which is prevalent all over the world.Although some progress has been made in the treatment of gastric cancer,its prognosis is still not optimistic,so it is of great significance to find reliable prog-nostic indicators to guide the treatment and management of patients with gastric cancer.AIM To explore the relationship between serum levels of five biomarkers[carcinoem-bryonic antigen(CEA),carbohydrate antigen(CA)19-9,CA72-4,CA24-2,and ferritin]and prognosis in patients with gastric cancer.METHODS This study included 200 patients with gastric adenocarcinoma,and conducted an in-depth analysis of their baseline characteristics,relationship between tumor markers and staging,and prognosis.The study found that CA19-9 has a signi-ficant correlation with tumor stage,the average levels of CA24-2,CEA,CA72-4 and ferritin were slightly increased disregarding the stage of tumor.Survival analysis showed that increases in CEA,CA19-9,CA24-2,and ferritin were all associated with shortened overall survival of patients.Further multivariate ana-lysis revealed that elevated serum CA72-4 levels were an inde-pendent adverse prognostic factor.RESULTS This study reveals that there is a significant correlation between the expression levels of serum tumor markers CEA,CA19-9,CA72-4,CA24-2 and ferritin in patients with gastric cancer and prognosis,and can be used as important indicators for prognostic evaluation of gastric cancer.In particular,markers that appear abnormally elevated initially may help identify gastric cancer patients with poor prognosis.CONCLUSION Serum CEA and CA19-9 play an important role in the prognosis assessment of gastric cancer,and are effective tools to guide clinical practice and optimize individualized treatment strategies for gastric cancer patients. 展开更多
关键词 Gastric cancer PROGNOSIS Carcinoembryonic antigen carbohydrate antigen 19-9 carbohydrate antigen 72-4 carbohydrate antigen 24-2 FERRITIN Serum markers Retrospective study
下载PDF
A Sharding Scheme Based on Graph Partitioning Algorithm for Public Blockchain
5
作者 Shujiang Xu Ziye Wang +4 位作者 Lianhai Wang Miodrag J.Mihaljevi′c Shuhui Zhang Wei Shao Qizheng Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3311-3327,共17页
Blockchain technology,with its attributes of decentralization,immutability,and traceability,has emerged as a powerful catalyst for enhancing traditional industries in terms of optimizing business processes.However,tra... Blockchain technology,with its attributes of decentralization,immutability,and traceability,has emerged as a powerful catalyst for enhancing traditional industries in terms of optimizing business processes.However,transaction performance and scalability has become the main challenges hindering the widespread adoption of blockchain.Due to its inability to meet the demands of high-frequency trading,blockchain cannot be adopted in many scenarios.To improve the transaction capacity,researchers have proposed some on-chain scaling technologies,including lightning networks,directed acyclic graph technology,state channels,and shardingmechanisms,inwhich sharding emerges as a potential scaling technology.Nevertheless,excessive cross-shard transactions and uneven shard workloads prevent the sharding mechanism from achieving the expected aim.This paper proposes a graphbased sharding scheme for public blockchain to efficiently balance the transaction distribution.Bymitigating crossshard transactions and evening-out workloads among shards,the scheme reduces transaction confirmation latency and enhances the transaction capacity of the blockchain.Therefore,the scheme can achieve a high-frequency transaction as well as a better blockchain scalability.Experiments results show that the scheme effectively reduces the cross-shard transaction ratio to a range of 35%-56%and significantly decreases the transaction confirmation latency to 6 s in a blockchain with no more than 25 shards. 展开更多
关键词 Blockchain sharding graph partitioning algorithm
下载PDF
Development and Validation of a Carbohydrate Metabolism-Related Model for Predicting Prognosis and Immune Landscape in Hepatocellular Carcinoma Patients
6
作者 Hong-xiang HUANG Pei-yuan ZHONG +9 位作者 Ping LI Su-juan PENG Xin-jing DING Xiang-lian CAI Jin-hong CHEN Xie ZHUI Zhi-hui LUI Xing-yu TAO Yang-yang LIU Li CHEN 《Current Medical Science》 SCIE CAS 2024年第4期771-788,共18页
Objective The activities and products of carbohydrate metabolism are involved in key processes of cancer.However,its relationship with hepatocellular carcinoma(HCC)is unclear.Methods The cancer genome atlas(TCGA)-HCC ... Objective The activities and products of carbohydrate metabolism are involved in key processes of cancer.However,its relationship with hepatocellular carcinoma(HCC)is unclear.Methods The cancer genome atlas(TCGA)-HCC and ICGC-LIRI-JP datasets were acquired via public databases.Differentially expressed genes(DEGs)between HCC and control samples in the TCGA-HCC dataset were identified and overlapped with 355 carbohydrate metabolism-related genes(CRGs)to obtain differentially expressed CRGs(DE-CRGs).Then,univariate Cox and least absolute shrinkage and selection operator(LASSO)analyses were applied to identify risk model genes,and HCC samples were divided into high/low-risk groups according to the median risk score.Next,gene set enrichment analysis(GSEA)was performed on the risk model genes.The sensitivity of the risk model to immunotherapy and chemotherapy was also explored.Results A total of 8 risk model genes,namely,G6PD,PFKFB4,ACAT1,ALDH2,ACYP1,OGDHL,ACADS,and TKTL1,were identified.Moreover,the risk score,cancer status,age,and pathologic T stage were strongly associated with the prognosis of HCC patients.Both the stromal score and immune score had significant negative/positive correlations with the risk score,reflecting the important role of the risk model in immunotherapy sensitivity.Furthermore,the stromal and immune scores had significant negative/positive correlations with risk scores,reflecting the important role of the risk model in immunotherapy sensitivity.Eventually,we found that high-/low-risk patients were more sensitive to 102 drugs,suggesting that the risk model exhibited sensitivity to chemotherapy drugs.The results of the experiments in HCC tissue samples validated the expression of the risk model genes.Conclusion Through bioinformatic analysis,we constructed a carbohydrate metabolism-related risk model for HCC,contributing to the prognosis prediction and treatment of HCC patients. 展开更多
关键词 hepatocellular carcinoma carbohydrate metabolism the cancer genome atlas BIOINFORMATICS
下载PDF
Asiaticoside ameliorates type 2 diabetes mellitus in rats by modulating carbohydrate metabolism and regulating insulin signaling
7
作者 B.Prathap V.Satyanarayanan +1 位作者 K.Duraipandian P.Subashree 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第9期401-409,共9页
Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and... Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and 100 mg/kg body weight)was administered to STZ-NAD-induced diabetic rats for 45 days,and its effects on hyperglycaemic,carbohydrate metabolic,and insulin signaling pathway markers were examined.Results:Asiaticoside increased insulin production,lowered blood glucose levels,and enhanced glycolysis by improving hexokinase activity and suppressing glucose-6-phosphatase and fructose-1,6-bisphosphatase activities.Abnormalities in glycogen metabolism were mitigated by increasing glycogen synthase activity and gluconeogenesis was decreased by decreasing glycogen phosphorylase activity.Furthermore,asiaticoside upregulated the mRNA expressions of IRS-1,IRS-2,and GLUT4 in STZ-NAD-induced diabetic rats and restored the beta cell morphology to normal.Conclusions:Asiaticoside has the potential to ameliorate type 2 diabetes by improving glycolysis,gluconeogenesis,and insulin signaling pathways. 展开更多
关键词 ASIATICOSIDE Type 2 diabetes mellitus Metabolic disorders carbohydrate metabolism Insulin signaling
下载PDF
Effects of drought on non-structural carbohydrates and C,N,and P stoichiometric characteristics of Pinus yunnanensis seedlings
8
作者 Zhijuan Zhao Lina Wang +7 位作者 Yuanxi Liu Jianli Sun Jiandong Xiao Qiong Dong Lianfang Li Wanjie Zhang Chao Wang Junwen Wu 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第1期90-102,共13页
To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,lig... To study non-structural carbohydrate character-istics and nutrient utilization strategies of Pinus yunnanen-sis under continuous drought conditions,2-year-old seed-lings were planted in pots with appropriate water,light and moderate and severe drought treatments[(80±5),(65±5),(50±5),and(35±5)%of field water-holding capacity].Non-structural carbohydrates,carbon(C),nitrogen(N),and phosphorus(P)concentrations were measured in each plant component.The results show that:(1)With increasing drought,non-structural carbohydrates gradually increased in leaves,stems,and coarse roots,while gradually decreased in fine roots;(2)C concentrations of all were relatively stable under different stress levels.Phosphorous utilization of each component increased under light and moderate drought conditions,while N and P utilization efficiency of each plant component decreased under severe drought.Growth was mainly restricted by N,first decreasing and then increasing with increased drought;(3)There was a correlation between the levels of non-structural carbohydrates and C,N,and P in each component.Changes in N concentration affected the interconversion between soluble sugar and starch,which play a regulatory role in the fluctuation of the concentration of non-structural carbohydrates;and,(4)Plasticity analysis showed that P.yunnanensis seedlings responded to drought mainly by altering starch concentration,the ratio of soluble sugar to starch in leaves and stems,and further by alter-ing N and P utilization efficiencies.Overall,these results suggest that the physiological activities of all organs of P.yunnanensis seedlings are restricted under drought and that trade-offs exist between different physiological indicators and organs.Our findings are helpful in understanding non-structural carbohydrate and nutrient adaptation mechanisms under drought in P.yunnanensis seedlings. 展开更多
关键词 Pinus yunnanensis seedlings DROUGHT Non-structural carbohydrates C N P stoichiometric characteristics
下载PDF
Impacts of Defoliation on Morphological Characteristics and Non-Structural Carbohydrates of Populus talassica × Populus euphratica Seedlings
9
作者 Mengxu Su Zhanjiang Han +2 位作者 Zhen Zhao Xiaofeng Wu Jiaju Wu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1689-1703,共15页
Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forest... Leaves are important‘source’organs that synthesize organic matter,providing carbon sources for plant growth.Here,we used Populus talassica×Populus euphratica,the dominant species in ecological and timber forests,to simulate carbon limitation through artificial 25%,50%,and 75%defoliation treatments and explore the effects on root,stem,and leaf morphology,biomass accumulation,and carbon allocation strategies.At the 60th d after treat-ment,under 25%defoliation treatment,the plant height,specific leaf weight,root surface area and volume,and concentrations of non-structural carbohydrates in stem and root were significantly increased by 9.13%,20.00%,16.60%,31.95%,5.12%,and 9.34%,respectively,relative to the control.There was no significant change in the growth indicators under 50%defoliation treatment,but the concentrations of non-structural carbohydrates in the leaf and stem significantly decreased,showing mostly a negative correlation between them.The opposite was observed in the root.Under 75%defoliation treatment,the plant height,ground diameter,leaf number,single leaf area,root,stem,and total biomass were significantly reduced by 14.15%,10.24%,14.86%,11.31%,11.56%,21.87%,and 16.82%,respectively,relative to the control.The concentrations of non-structural carbohydrates in various organs were significantly reduced,particularly in the consumption of the starch concentrations in the stem and root.These results indicated that carbon allocation strategies can be adjusted to increase the con-centration of non-structural carbohydrates in root and meet plant growth needs under 25%and 50%defoliation.However,75%defoliation significantly limited the distribution of non-structural carbohydrates to roots and stems,reduced carbon storage,and thus inhibited plant growth.Defoliation-induced carbon limitation altered the carbon allocation pattern of P.talassica×P.euphratica,and the relationship between carbon reserves in roots and tree growth recovery after defoliation was greater.This study provides a theoretical basis for the comprehen-sive management of P.talassica×P.euphratica plantations,as well as a reference for the study of plantation car-bon allocation strategies in the desert and semi-desert regions of Xinjiang under carbon-limitation conditions. 展开更多
关键词 Populus talassica×Populus euphratica DEFOLIATION carbon limitation carbon allocation non-structural carbohydrates
下载PDF
Combining prognostic value of serum carbohydrate antigen 19-9 and tumor size reduction ratio in pancreatic ductal adenocarcinoma
10
作者 Dong-Qin Xia Yong Zhou +6 位作者 Shuang Yang Fang-Fei Li Li-Ya Tian Yan-Hua Li Hai-Yan Xu Cai-Zhi Xiao Wei Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第3期798-809,共12页
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a common cancer with increasing morbidity and mortality due to changes of social environment.AIM To evaluate the significance of serum carbohydrate antigen 19-9(CA19... BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a common cancer with increasing morbidity and mortality due to changes of social environment.AIM To evaluate the significance of serum carbohydrate antigen 19-9(CA19-9)and tumor size changes pre-and post-neoadjuvant therapy(NAT).METHODS This retrospective study was conducted at the Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,Chongqing University Cancer Hospital.This study specifically assessed CA19-9 levels and tumor size before and after NAT.RESULTS A total of 156 patients who completed NAT and subsequently underwent tumor resection were included in this study.The average age was 65.4±10.6 years and 72(46.2%)patients were female.Before survival analysis,we defined the post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level as the CA19-9 ratio(CR).The patients were divided into three groups:CR<0.5,CR>0.5 and<1 and CR>1.With regard to tumor size measured by both computed tomography and magnetic resonance imaging,we defined the post-NAT tumor size/pre-NAT tumor size as the tumor size ratio(TR).The patients were then divided into three groups:TR<0.5,TR>0.5 and<1 and TR>1.Based on these groups divided according to CR and TR,we performed both overall survival(OS)and disease-free survival(DFS)analyses.Log-rank tests showed that both OS and DFS were significantly different among the groups according to CR and TR(P<0.05).CR and TR after NAT were associated with increased odds of achieving a complete or near-complete pathologic response.Moreover,CR(hazard ratio:1.721,95%CI:1.373-3.762;P=0.006),and TR(hazard ratio:1.435,95%CI:1.275-4.363;P=0.014)were identified as independent factors associated with OS.CONCLUSION This study demonstrated that post-NAT serum CA19-9 level/pre-NAT serum CA19-9 level and post-NAT tumor size/pre-NAT tumor size were independent factors associated with OS in patients with PDAC who received NAT and subsequent surgical resection. 展开更多
关键词 Pancreatic ductal adenocarcinoma carbohydrate antigen 19-9 Tumor size Pathologic response Biomarkers
下载PDF
Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice(Oryza sativa L.)by regulating starch metabolism
11
作者 Yuguang Zang Gaozhao Wu +10 位作者 Qiangqiang Li Yiwen Xu Mingming Xue Xingyu Chen Haiyan Wei Weiyang Zhang Hao Zhang Lijun Liu Zhiqin Wang Junfei Gu Jianchang Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1507-1522,共16页
Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to st... Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism. 展开更多
关键词 rice(Oryza sativa L.) non-structural carbohydrates(NsCs) enzymatic activity grain illing starch granules vascular bundle
下载PDF
Partitioning Calculation Method of Short-Circuit Current for High Proportion DG Access to Distribution Network
12
作者 Wei Wang Qingzhu Shao +4 位作者 Shaoliang Wang Yiwei Zhao Yuanbo Ye Duanchao Li Mengyu Wu 《Energy Engineering》 EI 2024年第9期2569-2584,共16页
Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioni... Aiming at the problemthat the traditional short-circuit current calculationmethod is not applicable to Distributed Generation(DG)accessing the distribution network,the paper proposes a short-circuit current partitioning calculation method considering the degree of voltage drop at the grid-connected point of DG.Firstly,the output characteristics of DG in the process of low voltage ride through are analyzed,and the equivalent output model of DG in the fault state is obtained.Secondly,by studying the network voltage distribution law after fault in distribution networks under different DG penetration rates,the degree of voltage drop at the grid-connected point of DG is used as a partition index to partition the distribution network.Then,iterative computation is performed within each partition,and data are transferred between partitions through split nodes to realize the fast partition calculation of short-circuit current for high proportion DG access to distribution network,which solves the problems of long iteration time and large calculation error of traditional short-circuit current.Finally,a 62-node real distribution network model containing a high proportion of DG access is constructed onMATLAB/Simulink,and the simulation verifies the effectiveness of the short-circuit current partitioning calculation method proposed in the paper,and its calculation speed is improved by 48.35%compared with the global iteration method. 展开更多
关键词 High proportion DG short-circuit calculation low voltage ride through partition iteration
下载PDF
Understanding and simulating of three-dimensional subsurface hydrological partitioning in an alpine mountainous area, China
13
作者 ZHANG Lanhui TU Jiahao +3 位作者 AN Qi LIU Yu XU Jiaxin ZHANG Haixin 《Journal of Arid Land》 SCIE CSCD 2024年第11期1463-1483,共21页
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud... Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research. 展开更多
关键词 subsurface hydrological partitioning lateral flow random forest model community land model(CLM) alpine mountainous area
下载PDF
A Two-Layer Active Power Optimization and Coordinated Control for Regional Power Grid Partitioning to Promote Distributed Renewable Energy Consumption
14
作者 Wentao Li Jiantao Liu +3 位作者 Yudun Li GuoxinMing Kaifeng Zhang Kun Yuan 《Energy Engineering》 EI 2024年第9期2479-2503,共25页
With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable ener... With the large-scale development and utilization of renewable energy,industrial flexible loads,as a kind of loadside resource with strong regulation ability,provide new opportunities for the research on renewable energy consumption problem in power systems.This paper proposes a two-layer active power optimization model based on industrial flexible loads for power grid partitioning,aiming at improving the line over-limit problem caused by renewable energy consumption in power grids with high proportion of renewable energy,and achieving the safe,stable and economical operation of power grids.Firstly,according to the evaluation index of renewable energy consumption characteristics of line active power,the power grid is divided into several partitions,and the interzone tie lines are taken as the optimization objects.Then,on the basis of partitioning,a two-layer active power optimization model considering the power constraints of industrial flexible loads is established.The upper-layer model optimizes the planned power of the inter-zone tie lines under the constraint of the minimum peak-valley difference within a day;the lower-layer model optimizes the regional source-load dispatching plan of each resource in each partition under the constraint of theminimumoperation cost of the partition,so as to reduce the line overlimit phenomenon caused by renewable energy consumption and save the electricity cost of industrial flexible loads.Finally,through simulation experiments,it is verified that the proposed model can effectively mobilize industrial flexible loads to participate in power grid operation and improve the economic stability of power grid. 展开更多
关键词 Renewable energy consumption active power optimization power grid partitioning industrial flexible loads line over-limit
下载PDF
Effects of culm carbohydrate partitioning on basal stem strength in a high-yielding rice population 被引量:15
15
作者 Jun Zhang Ganghua Li +7 位作者 Qingyu Huang Zhenghui Liu Chengqiang Ding She Tang Lin Chen Shaohua Wang Yanfeng Ding Weijian Zhang 《The Crop Journal》 SCIE CAS CSCD 2017年第6期478-487,共10页
Rice culm carbohydrate transport can simultaneously affect grain filling and stem lodging resistance by regulating non-structural carbohydrate(NSC) and structural carbohydrate(SC) contents. However, the relationship b... Rice culm carbohydrate transport can simultaneously affect grain filling and stem lodging resistance by regulating non-structural carbohydrate(NSC) and structural carbohydrate(SC) contents. However, the relationship between carbohydrate transposition and culm strength is not well documented. Accordingly, a high-yielding hybrid rice cultivar(Y Liangyou 2) was tested under different N fertilization regimes at two locations, Taoyuan(a special high-yield eco-site), Yunnan province and Danyang(a representative eco-site of the middle and lower Yangtze), Jiangsu province, China. Significantly higher grain yield and basal stem strength were found at Taoyuan than Danyang under all N rates throughout the two-year experiment. At heading stage, soluble sugars, starch, cellulose and lignin contents of the basal culm at Taoyuan were significantly 132.0%, 73.7%, 1.2%, and 62.7% higher than those at Danyang, respectively. At 20 days after heading, soluble sugars and starch content at Taoyuan decreased significantly compared to Danyang, but lignin content remained higher. Culm carbohydrate transport to kernels at Taoyuan was significantly greater than that at Danyang, and the proportion of soluble sugars and starch was correspondingly 62.9%lower. However, the proportion of lignin and cellulose was 22.7% higher at Taoyuan than that at Danyang. Soluble sugars and starch partitioning were significantly reduced under an increased nitrogen application rate, but SC partitioning was little affected. There were significant positive correlations between basal culm bending stress and dry weight and cellulose and lignin proportions at both locations under all N rates, suggesting that the higher SC proportion at 20 days after heading was primarily responsible for culm strength.These results suggest that high-yielding rice populations with greater culm strength require both moderate NSC transport and greater SC accumulation. 展开更多
关键词 RICE HIGH-YIELDING LODGING CULM strength carbohydrate partitioning
下载PDF
Effect of Phosphorus Deficiency on Leaf Photosynthesis and Carbohydrates Partitioning in Two Rice Genotypes with Contrasting Low Phosphorus Susceptibility 被引量:3
16
作者 LI Yong-fu Luo An-cheng +1 位作者 Muhammad Jaffar HASSAN WEI Xing-hua 《Rice science》 SCIE 2006年第4期283-290,共8页
To study the effect of phosphorus (P) deficiency on leaf photosynthesis and carbohydrates partitioning and to determine whether the characteristics of leaf photosynthesis and carbohydrates partitioning are related t... To study the effect of phosphorus (P) deficiency on leaf photosynthesis and carbohydrates partitioning and to determine whether the characteristics of leaf photosynthesis and carbohydrates partitioning are related to low P tolerance in rice plants, a hydroponic culture experiment supplied with either sufficient P (10 mg/L) or deficient P (0.5 mg/L) was conducted by using two rice genotypes different in their responses to low P stress. Results showed that the plant growth of Zhenongda 454 (low P tolerant genotype) was less affected by P deficiency compared with Sanyang'ai (low P sensitive genotype). Under P-deficient conditions, photosynthetic rates of Zhenongda 454 and Sanyang'ai were decreased by 16% and 35%, respectively, and Zhenongda 454 showed higher photosynthetic rate than Sanyang'ai. Phosphorus deficiency decreased the stomatal conductance for both genotypes, but had no significant influence on leaf internal CO2 concentration (Ci), suggesting that the decrease in leaf photosynthetic rate of rice plants induced by P deficiency was not due to stomatal limitation. Phosphorus deficiency increased the concentration of soluble carbohydrates and sucrose in shoots and roots for both genotypes, and also markedly increased the allocation of soluble carbohydrates and sucrose to roots. Under deficient P supply, Zhenongda 454 had higher root/shoot soluble carbohydrates content ratio and root/shoot sucrose content ratio than Sanyang'ai. In addition, phosphorus deficiency increased the concentration of starch in roots for both genotypes, whereas had no effect on the content of starch in shoots or roots. Compared to genotype Sanyang'ai, the better tolerance to low-P stress of Zhenongda 454 can be explained by the fact that Zhenongda 454 maintains a higher photosynthetic rate and a greater ability to allocate carbohydrates to the roots under P deficiency. 展开更多
关键词 carbohydrate phosphorus deficiency PHOTOSYNTHESIS rice
下载PDF
Carcinoembryonic antigen,carbohydrate antigen 199 and carbohydrate antigen 724 in gastric cancer and their relationship with clinical prognosis 被引量:4
17
作者 Ran Wang Chun-Lei Zuo +1 位作者 Rui Zhang Li-Mei Zhu 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第8期1475-1485,共11页
BACKGROUND Gastric cancer(GC)is a common malignant tumor of the digestive system with a high degree of malignancy.It usually develops insidiously without any specific symptoms in the early stages.As one of the disease... BACKGROUND Gastric cancer(GC)is a common malignant tumor of the digestive system with a high degree of malignancy.It usually develops insidiously without any specific symptoms in the early stages.As one of the diseases caused by abnormal gene changes,GC has abnormal expression of various oncogenes and products during its development.Tumor markers such as carcinoembryonic antigen(CEA),carbohydrate antigen 199(CA199)and carbohydrate antigen 724(CA724)are not expressed or lowly expressed in normal people,but significantly increased after carcinogenesis.Monitoring the changes in the levels of tumor markers such as CEA,CA199 and CA724 is conducive to early diagnosis and evaluation of the occurrence of some solid tumors.AIM To investigate the expression of CEA,CA199 and CA724 in GC and their correlation with clinical features,hoping to provide more effective markers for the early preventive diagnosis of GC.METHODS Of 87 patients with GC admitted to our hospital from September 2020 to December 2021 were included in the GC group,and another 80 healthy people who came to our hospital for physical examination with normal results during the same period were selected as the control group.The serum CEA,CA199,and CA724 levels were compared between the two groups,and the serum CEA,CA199,and CA724 levels were compared in patients with GC at different TNM stages,and the differences in the positive rates of CEA,CA199,and CA724 alone and in combination in detecting TNM stages of GC and GC were compared.In addition,the relationship between the levels of tumor markers CEA,CA199 and CA724 and the clinicopathological characteristics of GC patients was also analyzed.The relationship between the serum levels of CEA,CA199 and CA724 and the survival period of GC patients was analyzed by Pearson.RESULTS The serum levels of CEA,CA199 and CA724 in GC group were significantly higher than those in control group(P<0.05).With the increase of TNM stage,the serum CEA,CA199 and CA724 expression levels in GC patients increased significantly,and the differences between groups were statistically significant(P<0.05).The positive rate of the CA724 single test was higher than that of CEA and CA199 single test(P<0.05).The positive rate of the three combined tests was 95.40%(83/87),which was higher than that of CEA,CA199 and CA724 single tests.The difference was statistically significant(P<0.05).The combined detection positive rates of CEA,CA199,and CA724 in stages I,II,III,and IV of GC were 89.66%,93.10%,98.85%,and 100.00%respectively,all of which were higher than the individual detection rates of CEA,CA199,and CA724.The differences were statistically significant(P<0.05).There was no significant difference in serum CEA,CA199 and CA724 levels between GC patients with different genders,smoking history and alcohol history(P>0.05).However,the serum CEA,CA199 and CA724 levels were significantly higher in GC patients aged≥45 years,TNM stage III-IV,with lymph node metastasis and tumor diameter≥5 cm than in GC patients aged<45 years,TNM stage I-II,without lymph node metastasis and tumor diameter<5 cm(P<0.05).CONCLUSION The expression levels of serum tumor markers CEA,CA199 and CA724 in patients with GC are high and rise with the increase of TNM stage.The levels of CEA,CA199 and CA724 are related to age,TNM stage,lymph node metastasis and tumor diameter.The combined detection of CEA,CA199 and CA724 is helpful to improve the diagnostic accuracy of GC with high clinical guidance value. 展开更多
关键词 Carcinoembryonic antigen carbohydrate antigen 199 carbohydrate antigen 724 Gastric cancer TNM stage CLINICOPATHOLOGIC
下载PDF
Allocation patterns of nonstructural carbohydrates in response to CO_(2)elevation and nitrogen deposition in Cunninghamia lanceolata saplings 被引量:1
18
作者 Wenhui Zheng Renshan Li +7 位作者 Qingpeng Yang Weidong Zhang Ke Huang Xin Guan Longchi Chen Xin Yu Qingkui Wang Silong Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期87-98,共12页
Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function... Stored nonstructural carbohydrates(NSC)indicate a balance between photosynthetic carbon(C)assimilation and growth investment or loss through respiration and root exudation.They play an important role in plant function and whole-plant level C cycling.CO_(2)elevation and nitrogen(N)deposition,which are two major environmental issues worldwide,aff ect plant photosynthetic C assimilation and C release in forest ecosystems.However,information regarding the eff ect of CO_(2)elevation and N deposition on NSC storage in diff erent organs remains limited,especially regarding the trade-off between growth and NSC reserves.Therefore,here we analyzed the variations in the NSC storage in diff erent organs of Chinese fi r(Cunninghamia lanceolata)under CO_(2)elevation and N addition and found that NSC concentrations and contents in all organs of Chinese fi r saplings increased remarkably under CO_(2)elevation.However,N addition induced diff erential accumulation of NSC among various organs.Specifi cally,N addition decreased the NSC concentrations of needles,branches,stems,and fi ne roots,but increased the NSC contents of branches and coarse roots.The increase in the NSC contents of roots was more pronounced than that in the NSC content of aboveground organs under CO_(2)elevation.The role of N addition in the increase in the structural biomass of aboveground organs was greater than that in the increase in the structural biomass of roots.This result indicated that a diff erent tradeoff between growth and NSC storage occurred to alleviate resource limitations under CO_(2)elevation and N addition and highlights the importance of separating biomass into structural biomass and NSC reserves when investigating the eff ects of environmental change on biomass allocation. 展开更多
关键词 Biomass partition CO_(2)elevation N deposition Nonstructural carbohydrates Structural biomass
下载PDF
Enhancing boll protein synthesis and carbohydrate conversion by the application of exogenous amino acids at the peak flowering stage increased the boll Bt toxin concentration and lint yield in cotton 被引量:2
19
作者 LIU Zhen-yu LI Yi-yang +7 位作者 Leila.I.M.TAMBEL LIU Yu-ting DAI Yu-yang XU Ze LENG Xin-hua ZHANG Xiang CHEN De-hua CHEN Yuan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第6期1684-1694,共11页
In Bacillus thuringenesis(Bt) transgenic cotton, the cotton boll has the lowest insecticidal protein content when compared to the other organs. The present study investigated the effects of amino acid spray applicatio... In Bacillus thuringenesis(Bt) transgenic cotton, the cotton boll has the lowest insecticidal protein content when compared to the other organs. The present study investigated the effects of amino acid spray application at the peak flowering stage on the cotton boll Bt toxin concentration and yield formation. Boll protein synthesis and carbohydrate conversion were also studied to reveal the fundamental mechanism. Three treatments(i.e., CK, the untreated control;LA1, five amino acids;LA2, 21 amino acids) were applied to two Bt cultivars of G. hirsutum(i.e., the hybrid Sikang 3 and the conventional Sikang 1) in the cotton-growing seasons during 2017 and 2018. Amino acid spray application at the peak flowering stage resulted in an increase of 5.2–16.4% in the boll Bt protein concentration and an increase of 5.5–11.3%in the seed cotton yield, but there was no difference between the two amino acid treatments. In addition, amino acid applications led to increases in the amino acid content, soluble protein content, glutamate pyruvate transaminase(GPT)activity, glutamate oxaloacetate transaminase(GOT) activity, glucose content, fructose content and soluble acid invertase(SAI) activity. This study also found that Bt protein content, enhanced boll number and the weight of opened bolls were closely related to carbon and nitrogen metabolism. The Bt protein content had significant linear positive correlations with amino acid and soluble protein contents. Enhanced boll number had significant linear positive correlations with the GPT and GOT activities from 15–25 days after flowering(DAF). The weight of opened bolls from 55–65 DAF had a significant linear positive correlation with the SAI activity. These results indicate that the enhancement of boll protein synthesis and carbohydrate conversion by amino acid application resulted in a simultaneous increase in the boll Bt protein concentration and cotton lint yield. 展开更多
关键词 Bt cotton boll insecticidal protein protein synthesis carbohydrate conversion
下载PDF
Multi-year throughfall reduction enhanced the growth and non-structural carbohydrate storage of roots at the expenses of above-ground growth in a warm-temperate natural oak forest 被引量:2
20
作者 Cuiju Liu Zhicheng Chen +4 位作者 Shirong Liu Kunfang Cao Baoliang Niu Xiaojing Liu Xiaomin Gao 《Forest Ecosystems》 SCIE CSCD 2023年第3期357-367,共11页
The more frequent occurrence and severer drought events resulting from climate change are increasingly affecting the physiological performance of trees and ecosystem carbon sequestration in many regions of the world.H... The more frequent occurrence and severer drought events resulting from climate change are increasingly affecting the physiological performance of trees and ecosystem carbon sequestration in many regions of the world.However,our understanding of the mechanisms underlying the responses and adaption of forest trees to prolonged and multi-year drought is still limited.To address this problem,we conducted a long-term manipulative throughfall reduction(TFR,reduction of natural throughfall by 50%–70%during growing seasons)experiment in a natural oriental white oak(Quercus aliena var.acuteserrata Maxim.)forest under warm-temperate climate.After seven years of continuous TFR treatment,the aboveground growth in Q.aliena var.acuteserrata started to decline.Compared with the control plots,trees in the TFR treatment significantly reduced growth increments of stems(14.2%)and leaf area index(6.8%).The rate of net photosynthesis appeared to be more susceptible to changes in soil water in trees subjected to the TFR than in the control.The TFR-treated trees allocated significantly more photosynthates to belowground,leading to enhanced growth and nonstructural carbohydrates(NSC)storage in roots.The 7-year continuous TFR treatment increased the biomass,the production and the NSC concentration in the fine roots by 53.6%,153.6%and 9.6%,respectively.There were clear trade-offs between the aboveground growth and the fine root biomass and NSC storage in Q.aliena var.acuteserrata trees in response to the multi-year TFR treatment.A negative correlation between the fine root NSC concentration and soil water suggested a strategy of preferential C storage over growth when soil water became deficient;the stored NSC during water limitation would then help promote root growth when drought stress is released.Our findings demonstrate the warm-temperate oak forest adopted a more conservative NSC use strategy in response to long-term drought stress,with enhanced root growth and NSC storage at the expenses of above-ground growth to mitigate climate changeinduced drought. 展开更多
关键词 Climate change Carbon allocation Drought stress Forest ecophysiology Nonstructural carbohydrates Warm-temperate forests
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部