After the analysis of connotations of human behavior and low-carbon landscape,according to relevant theories of behavioral science and psychology,the internal relation between behavior and lowcarbon landscape has been...After the analysis of connotations of human behavior and low-carbon landscape,according to relevant theories of behavioral science and psychology,the internal relation between behavior and lowcarbon landscape has been discussed.They relate to,interact on and are the precondition of each other.Reasonable landscape environment has carried people's expectation for nature,and different landscapes give people different feelings and present to be of different behavior features.Finally,the paper has proposed constructing low-carbon landscape in the perspective of landscape design idea,design methods,construction process and later management,providing a theoretical basis for advocating energy saving and environmental protection,and creating green ecology.展开更多
Si-SiC coating was prepared on the surface of carbon/carbon (C/C) composites by a two-step technique of pack cementation, and the influences of thermal shock between 1773 K and room temperature in air on the mechani...Si-SiC coating was prepared on the surface of carbon/carbon (C/C) composites by a two-step technique of pack cementation, and the influences of thermal shock between 1773 K and room temperature in air on the mechanical property and fracture behavior of the coated C/C were studied. The results show that, after thermal shock between !773 K and room temperature for 5, 10 and 15 times, the flexural strength of coated composites increases by 4.29%, 15.00% and 24.20%, respectively. The toughness of the coated C/C enhances gradually during the thermal shock test. The improvement of the mechanical property after the thermal shock test is primarily caused by the weakening of the fiber-matrix interface and the reduction of residual thermal stresses by thermal shock.展开更多
The carbon dioxide corrosion behavior of low alloy pipeline steel was investigated by immersion experiment. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), an...The carbon dioxide corrosion behavior of low alloy pipeline steel was investigated by immersion experiment. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to reflect the microstructure of the tested material and the corrosion morphology characterization. Results show that precipitate particles may accelerate the iron cabonate crystal formation process of the nucleation growth and promote the formation of compact layer. The major corrosion phases are FeCO3 and complexity compound containing Fe and Cr. The corrosion behavior consists of three stages. At the first stage, a thin inner layer and an inhomogeneous outer layer have appeared. At the second stage, the outer layer becomes homogeneous and compact, which prevents corroding the steel substrate further. At the third stage, iron carbonate crystal tends to nucleate and grow locally. The corrosion rate obtained by weight loss method increases abruptly first and then decreases quickly with increasing corrosion time. The mutual relation among microstructure, corrosion surface morphology, corrosion phases and corrosion kinetics is discussed.展开更多
Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obt...Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obtained were investigated. It was found that the tensile modulus of the composites was increased with the addition of CNFs, but their elongation at break and fracture strain energy were decreased, while the tensile strength of the composites was firstly increased and then decreased due to the agglomeration of CNFs at higher loading. Nonisothermal crystallization analysis showed that the CNFs played a role as nucleating agent in PP matrix, which led to increment in the crystallization rate and the degree of crystallinity of PP. Moreover, X-ray diffraction studies showed that the CNFs incorporated in the PP matrix favored the growth of (040)-oriented PP crystals. With the increase in the CNF content, the nucleating and orientation roles of the CNFs were obviously enhanced.展开更多
The pullout behavior of large-diameter collapsed double-walled carbon nanotubes(DWCNT) was studied by molecular dynamics simulations and compared with those in the circular cross-sectioned state. The pullout force-d...The pullout behavior of large-diameter collapsed double-walled carbon nanotubes(DWCNT) was studied by molecular dynamics simulations and compared with those in the circular cross-sectioned state. The pullout force-displacement curves of both are in good agreement with the same mean value of the pullout force during the steady pullout stage. The pullout force was mainly due to the formation of new surfaces; the friction between nested walls was negligible. The effects of different chiral combinations and inter-wall spacings on the pullout behavior for both section situations were investigated. The commensurate(zigzag/zigzag or armchair/armchair) bi-tube systems have a larger fluctuation in the pullout force. The smaller interspacing implies lower mean pullout force with stronger fluctuations.展开更多
Liquid ball-milling dispersant method was used to prepare the ZrO2-doped carbon laminations from mesocarbon microbeads(MCMBs). After sintering at 1 300 ℃ in nitrogen atmosphere, the effect of ZrO2 concentration on ...Liquid ball-milling dispersant method was used to prepare the ZrO2-doped carbon laminations from mesocarbon microbeads(MCMBs). After sintering at 1 300 ℃ in nitrogen atmosphere, the effect of ZrO2 concentration on sintering behavior, electric conductivity as well as bending strength of the carbon laminations was investigated in detail. The results showed that the volumetric shrinkage rate of the carbon laminations decreased from 38.2% to 30.9% when the ZrO2 concentration in raw materials varied from 0 to 16 wt%. Compared with undoped carbon lamination, the samples had high-electric conductivity and excellent bending strength in all cases. The electric conductivity achieved the maximum value of 225 S/cm, and the bending strength of the carbon lamination was 119.24 MPa for a concentration of 8 wt% ZrO2 in raw materials. In addition, the electric conductivity and bending strength reducing were observed when the ZrO2 concentration was higher than 8 wt%. The catalytic effect on graphitization for the carbon laminations was the most effective when the ZrO2 concentration was set at 8 wt% in raw materials.展开更多
The influences of the fiber volume fraction on the electrical conductivity and the fraction change of electrical resistance under three-point-bending test were discussed.It is found that the relationship beween the el...The influences of the fiber volume fraction on the electrical conductivity and the fraction change of electrical resistance under three-point-bending test were discussed.It is found that the relationship beween the electrical conductivity of composites and the fiber volume fraction can be explained by the percolation theory and the change of electrical resistance of specimens reflects to the process of loading.The sensitivity and the response of the change of electrical resistance to the load for specimens with different fiber volume fractions are quite different.which provide an important guide for the manufacture of conductive and intrinsically smart carbon fiber composite.展开更多
Theoretical consideration was conducted on a relation between pore diameter and interfacialarea between pores and fibers when pores uniforinly distribute in C/C composites. It was shownthat bonding at the fiber/matrix...Theoretical consideration was conducted on a relation between pore diameter and interfacialarea between pores and fibers when pores uniforinly distribute in C/C composites. It was shownthat bonding at the fiber/matrix interface apparently decreased with decreasing a pore diameter,and consequently a new idea of microspace modification concept was proposed for controllingfracture behavior of C/C composites. Four types of C/C composites with various pore structureswere fabricated by hot-pressing, and their fracture behavior was investigated by three pointbending tests. The fracture behavior of the C/C composites was changed from brittle one topseudo ductile one with decreasing the pore diameter. This result supported the validity of themicrospace modification concept proposed in this paper.展开更多
The use of iron ores bearing titanium as a raw material is an effective measure to prevent hearth erosion and prolong the life of a blast furnace. In this research, the effect of titanium content on the precipitation ...The use of iron ores bearing titanium as a raw material is an effective measure to prevent hearth erosion and prolong the life of a blast furnace. In this research, the effect of titanium content on the precipitation behaviors of high-melting phases of carbon-saturated molten pig iron were studied by confocal scanning laser microscopy. The results showed that, when the titanium content was less than 0.25 wt%,Fe_3C was precipitated as a single phase from the molten carbon-saturated iron. The growth rate of the precipitated Fe_3C crystals was very high, reaching 7387 μm^2/s. When the titanium content in the molten pig iron was greater than 0.47 wt%, TiC crystals precipitated first. The shape and size of the precipitated TiC crystals did not obviously change. After TiC was precipitated, the fluidity of the molten pig iron worsened. With a decrease in temperature, Fe_3C was also precipitated but the growth rate of Fe_3C was limited by the presence of the first precipitated TiC phase. The crystal size of the precipitated Fe_3C was much smaller than that of pure Fe_3C.展开更多
Polyhedron lead hydroxide carbonate (2PbCO3·Pb(OH)2 ) microcrystals have been prepared in solution phase via a facile method in the presence of surfactant cetyltrimethylammonium bromide (CTAB). All the samp...Polyhedron lead hydroxide carbonate (2PbCO3·Pb(OH)2 ) microcrystals have been prepared in solution phase via a facile method in the presence of surfactant cetyltrimethylammonium bromide (CTAB). All the samples were characterized by powder X-ray diffraction ,pattern (XRD), field-emission scanning electron mi- croscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The possible growth mechanism was discussed. 2PbCO3·Pb(OH)2 microcrystals were found to be a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol. Compared with some other catalysts, such as AlCl3, ZnCl2, and Mg5(CO3)4(OH)2, 2PbCO3·Pb(OH)2 microcrystals are stable and show relatively high activity at low catalyst amount. When the reaction was carried out at 180 12, with a molar ratio of phenol to DMC of 2:1, a reaction time 14 h, and a catalyst amount 0.2% (molar ratio to phenol), the selectivity of DPC and methyl phenyl carbonate (MPC) was 14.7% and 78.8%, respectively.展开更多
This paper presents a study of the quasistatic and dynamic deformation behaviors of conventional and microalloyed medium-carbon steels in a wide temperature range. As strain rate increased, the flow stress increased a...This paper presents a study of the quasistatic and dynamic deformation behaviors of conventional and microalloyed medium-carbon steels in a wide temperature range. As strain rate increased, the flow stress increased at room temperature, but occasionally did not at elevated temperatures. The flow stress of the microalloyed steel containing precipitates was less sensitive to strain rate at room temperature than that of the conventional steel due to a relatively larger activation length. Microstructural observation of the steels deformed after compression test indicated that inhomogeneous deformation became more serious with increasing strain rate and temperature without fracturing in the highly localized region.展开更多
This investigation describes the one step preparation of potassium carbonate by electrolysis of potas-sium chloride solution in electrolyzers with various Nation membranes.Potassium bicarbonate solution wasfed to the ...This investigation describes the one step preparation of potassium carbonate by electrolysis of potas-sium chloride solution in electrolyzers with various Nation membranes.Potassium bicarbonate solution wasfed to the cathode compartment,where it was converted into carbonate by reaction with the hydroxideformed at cathode.Because of the low OH^- concentration in the cathode compartment,the back migrationof OH^- through the membrane was almost negligible,resulting in a higher current efficiency,say 90% or more.In this study,electroconductivity,mass transfer,current efficiency and cell voltage were measured.Thefeasibility of the process was discussed and the optimal conditions examined.展开更多
Recently, Hsieh and Horng [1] published the paper entitled as above. In section 3 results and discussion, the authors mentioned the first and the second order kinetic models without any quotations. In fact these two k...Recently, Hsieh and Horng [1] published the paper entitled as above. In section 3 results and discussion, the authors mentioned the first and the second order kinetic models without any quotations. In fact these two kinetic models have been published [2-5]. In order to distinguish a kinetics model based on the ad- sorption capacity of a solid from the one based on the concentration of a solution, Lagergren's first-order rate equation has been called pseudo-first-order [6-7]. The Lagergren's equation has been widely cited, but there are far more mistakes made in the quotation and in the reference section of papers, including the title, the author's name, journal title, year of publishing, volume, and page number [3]. In addition, the second order kinetic expression for the adsorption systems of divalent metal ions using sphagnum moss peat has been reported by Ho [8].展开更多
Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient...Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient. However, there are some types of defects such as porosity that form during the manufacturing processes of composites and alter their mechanical behavior and material properties. In his study, hand lay-up was conducted to fabricate samples of carbon fiber-reinforced polymer composites with three different vacuum levels in order to vary porosity content. Nondestructive evaluation, destructive techniques and mechanical testing were conducted. Nondestructive evaluation results showed the trend in percentages of porosity through-thickness. Serial sectioning images revealed significant details about the composite’s internal structure such as the volume, morphology and distribution of porosity. Mechanical testing results showed that porosity led to a decrease in both Mode I static interlaminar fracture toughness and Mode I cyclic strain energy release rate fatigue life. The fractographic micrographs showed that porosity content increased as the vacuum decreased, and it drew a relationship between fracture mechanisms and mechanical properties of the composite under different modes of loading as a result of the porosity effects. Finally, in order to accurately quantify porosity percentages included in the samples of different vacuum levels, a comparison was made between the parameters and percentages resulted from the nondestructive evaluation and mechanical testing and the features resulted from fractography and serial sectioning.展开更多
The frictional resistance and machining quality when cutting carbon fiber reinforced plastics (CFRP) laminates are associated with tribological behavior of tool materials. In the present study, the tribological proper...The frictional resistance and machining quality when cutting carbon fiber reinforced plastics (CFRP) laminates are associated with tribological behavior of tool materials. In the present study, the tribological properties of three types of monolayer microcrystalline diamond (MCD) coatings, nanocrystalline diamond (NCD) coatings and dual-layer MCD/NCD coatings sliding against CFRP are investigated under dry lubricated conditions using the rotational friction tester. The coefficients of friction (COF), wear rate and worn surfaces of the contacted surfaces are analyzed for the MCD-CFRP, NCD-CFRP and MCD/NCD-CFRP contacting pairs. The results show that compared with the monolayer MCD and NCD, the bilayer of MCD/NCD coating displays the lowest COF with the value of ~0.13, it is 42% and 55% of the values for MCD and NCD coatings. Due to the rough surfaces of MCD, the wear debris of CFRP on MCD samples exhibits the plowing effect. While for the NCD and MCD/NCD samples, the wear fragments display the planar shapes. The wear rate of CFRP against MCD is more than twice that of CFRP against NCD, due to the excellent loading capacity. While the wear rate of CFRP against MCD/NCD is about twice than that of CFRP-NCD pairs. The bilayer of MCD/NCD combines the excellent advantages of high hardness of MCD and the smooth surface of NCD. It shows the broad application potential for the bilayer coatings.展开更多
By taking 40Cr as a specific object, cold extrusion deformation behavior of medium carbon steel after quenching and tempering was studied by experimental works. The influence of deformation extent (10%-50%), cone angl...By taking 40Cr as a specific object, cold extrusion deformation behavior of medium carbon steel after quenching and tempering was studied by experimental works. The influence of deformation extent (10%-50%), cone angle of die (90 °-120 °), hardness after quenching and tempering (HRC21-29) and lubricated condition on the forming load was analyzed. The results show that there is no central bursting and micro crack in the inner of the extruded specimen, and the forming quality is good. The double-peak phenomenon takes place at the front-end of the specimen; the double-peak index increases with deformation extent, and larger deformation can avoid the double-peak phenomenon. The deformation extent is the most important influencing factor, and the lubricated condition almost has no influence, which means that the phosphate coating plus soap process is still a proper lubrication method for cold extrusion of medium carbon steel after quenching and tempering. By investigating the microscopic structure before and after deformation, the initial equiaxed grain is elongated in the extrusion direction, and this feature is more significant at the front-end of specimen.展开更多
Better dealing with carbon issues can support the management of current greenhouse gas emissions while achieving energy economic diversification and energy security. Carbon dioxide displacement has become the most ack...Better dealing with carbon issues can support the management of current greenhouse gas emissions while achieving energy economic diversification and energy security. Carbon dioxide displacement has become the most acknowledged and practical method in enhanced oil recovery system. This is because of its oil sweep efficiency and ability to reduce the level of greenhouse gas emission. Nevertheless, it would lead to the organic solid phase deposition, which causes the changes of the wettability and the damages of wellbores and reservoirs. In this study, we used slim tube test and component test to research the dynamic characteristics of displacement process. In addition, the mechanism of porous media blockage was also investigated. Results show that when the displacement pressure closed to the minimum miscibility pressure, reservoir blockage in pore throat could happen. Component test characterizes that during near miscible displacement process, the components of oil sample varied obviously, the variation range of peak component carbon marks fluctuated strongly. Crude oil component differentiation could happen after carbon dioxide fully contacted with oil. Besides, the rapid extraction mechanism of aromatic hydrocarbons played a significant role in this process under such condition. The reason is that the solubility of saturated hydrocarbons to asphaltene and non-hydrocarbons is obviously weaker than aromatic hydrocarbons. Controlling the pressure is considered as an important link to prevent the occurrence of blocking in the carbon dioxide multiphase and multicomponent displacement process.展开更多
基金Supported by "Eleventh Five Year" Planning Project of Jiangxi Social Science (10YJ92)"Eleventh Five Year" Planning Project of Jiangxi Social Science (10YJ55)~~
文摘After the analysis of connotations of human behavior and low-carbon landscape,according to relevant theories of behavioral science and psychology,the internal relation between behavior and lowcarbon landscape has been discussed.They relate to,interact on and are the precondition of each other.Reasonable landscape environment has carried people's expectation for nature,and different landscapes give people different feelings and present to be of different behavior features.Finally,the paper has proposed constructing low-carbon landscape in the perspective of landscape design idea,design methods,construction process and later management,providing a theoretical basis for advocating energy saving and environmental protection,and creating green ecology.
基金supported by the National Natural Sci-ence Foundation of China under grant Nos. 50802075 and90716024, the "111" Project, China under grant No.08040.
文摘Si-SiC coating was prepared on the surface of carbon/carbon (C/C) composites by a two-step technique of pack cementation, and the influences of thermal shock between 1773 K and room temperature in air on the mechanical property and fracture behavior of the coated C/C were studied. The results show that, after thermal shock between !773 K and room temperature for 5, 10 and 15 times, the flexural strength of coated composites increases by 4.29%, 15.00% and 24.20%, respectively. The toughness of the coated C/C enhances gradually during the thermal shock test. The improvement of the mechanical property after the thermal shock test is primarily caused by the weakening of the fiber-matrix interface and the reduction of residual thermal stresses by thermal shock.
基金Supported by National Key Technology Research and Development Program of the Ministry of Science and Technology of China during the“12th Five-Year Plan”(No.2011BAE25B03)National High Technology Research and Development Program of China(No.2015AA03A501)the National Natural Science Foundation of China(No.51274063)
文摘The carbon dioxide corrosion behavior of low alloy pipeline steel was investigated by immersion experiment. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to reflect the microstructure of the tested material and the corrosion morphology characterization. Results show that precipitate particles may accelerate the iron cabonate crystal formation process of the nucleation growth and promote the formation of compact layer. The major corrosion phases are FeCO3 and complexity compound containing Fe and Cr. The corrosion behavior consists of three stages. At the first stage, a thin inner layer and an inhomogeneous outer layer have appeared. At the second stage, the outer layer becomes homogeneous and compact, which prevents corroding the steel substrate further. At the third stage, iron carbonate crystal tends to nucleate and grow locally. The corrosion rate obtained by weight loss method increases abruptly first and then decreases quickly with increasing corrosion time. The mutual relation among microstructure, corrosion surface morphology, corrosion phases and corrosion kinetics is discussed.
基金the National Natural Science Foundation of China(Grant No.50025204) the National Hi—Tech R&D Program of China.
文摘Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obtained were investigated. It was found that the tensile modulus of the composites was increased with the addition of CNFs, but their elongation at break and fracture strain energy were decreased, while the tensile strength of the composites was firstly increased and then decreased due to the agglomeration of CNFs at higher loading. Nonisothermal crystallization analysis showed that the CNFs played a role as nucleating agent in PP matrix, which led to increment in the crystallization rate and the degree of crystallinity of PP. Moreover, X-ray diffraction studies showed that the CNFs incorporated in the PP matrix favored the growth of (040)-oriented PP crystals. With the increase in the CNF content, the nucleating and orientation roles of the CNFs were obviously enhanced.
文摘The pullout behavior of large-diameter collapsed double-walled carbon nanotubes(DWCNT) was studied by molecular dynamics simulations and compared with those in the circular cross-sectioned state. The pullout force-displacement curves of both are in good agreement with the same mean value of the pullout force during the steady pullout stage. The pullout force was mainly due to the formation of new surfaces; the friction between nested walls was negligible. The effects of different chiral combinations and inter-wall spacings on the pullout behavior for both section situations were investigated. The commensurate(zigzag/zigzag or armchair/armchair) bi-tube systems have a larger fluctuation in the pullout force. The smaller interspacing implies lower mean pullout force with stronger fluctuations.
基金Funded by the Foundation of Jiangsu Key Laboratory of Fine Petrochemical Engineering
文摘Liquid ball-milling dispersant method was used to prepare the ZrO2-doped carbon laminations from mesocarbon microbeads(MCMBs). After sintering at 1 300 ℃ in nitrogen atmosphere, the effect of ZrO2 concentration on sintering behavior, electric conductivity as well as bending strength of the carbon laminations was investigated in detail. The results showed that the volumetric shrinkage rate of the carbon laminations decreased from 38.2% to 30.9% when the ZrO2 concentration in raw materials varied from 0 to 16 wt%. Compared with undoped carbon lamination, the samples had high-electric conductivity and excellent bending strength in all cases. The electric conductivity achieved the maximum value of 225 S/cm, and the bending strength of the carbon lamination was 119.24 MPa for a concentration of 8 wt% ZrO2 in raw materials. In addition, the electric conductivity and bending strength reducing were observed when the ZrO2 concentration was higher than 8 wt%. The catalytic effect on graphitization for the carbon laminations was the most effective when the ZrO2 concentration was set at 8 wt% in raw materials.
文摘The influences of the fiber volume fraction on the electrical conductivity and the fraction change of electrical resistance under three-point-bending test were discussed.It is found that the relationship beween the electrical conductivity of composites and the fiber volume fraction can be explained by the percolation theory and the change of electrical resistance of specimens reflects to the process of loading.The sensitivity and the response of the change of electrical resistance to the load for specimens with different fiber volume fractions are quite different.which provide an important guide for the manufacture of conductive and intrinsically smart carbon fiber composite.
文摘Theoretical consideration was conducted on a relation between pore diameter and interfacialarea between pores and fibers when pores uniforinly distribute in C/C composites. It was shownthat bonding at the fiber/matrix interface apparently decreased with decreasing a pore diameter,and consequently a new idea of microspace modification concept was proposed for controllingfracture behavior of C/C composites. Four types of C/C composites with various pore structureswere fabricated by hot-pressing, and their fracture behavior was investigated by three pointbending tests. The fracture behavior of the C/C composites was changed from brittle one topseudo ductile one with decreasing the pore diameter. This result supported the validity of themicrospace modification concept proposed in this paper.
基金financially supported by the National Natural Science Foundation of China (No. 51674054)the Open Foundation of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization of China
文摘The use of iron ores bearing titanium as a raw material is an effective measure to prevent hearth erosion and prolong the life of a blast furnace. In this research, the effect of titanium content on the precipitation behaviors of high-melting phases of carbon-saturated molten pig iron were studied by confocal scanning laser microscopy. The results showed that, when the titanium content was less than 0.25 wt%,Fe_3C was precipitated as a single phase from the molten carbon-saturated iron. The growth rate of the precipitated Fe_3C crystals was very high, reaching 7387 μm^2/s. When the titanium content in the molten pig iron was greater than 0.47 wt%, TiC crystals precipitated first. The shape and size of the precipitated TiC crystals did not obviously change. After TiC was precipitated, the fluidity of the molten pig iron worsened. With a decrease in temperature, Fe_3C was also precipitated but the growth rate of Fe_3C was limited by the presence of the first precipitated TiC phase. The crystal size of the precipitated Fe_3C was much smaller than that of pure Fe_3C.
基金Sponsored by the National Natural Science Foundation of China (20671011,20331010,90406002 and 90406024)"111"Project (B07012) Key Laboratory of Structural Chemistry Foundation,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences(060017)
文摘Polyhedron lead hydroxide carbonate (2PbCO3·Pb(OH)2 ) microcrystals have been prepared in solution phase via a facile method in the presence of surfactant cetyltrimethylammonium bromide (CTAB). All the samples were characterized by powder X-ray diffraction ,pattern (XRD), field-emission scanning electron mi- croscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The possible growth mechanism was discussed. 2PbCO3·Pb(OH)2 microcrystals were found to be a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol. Compared with some other catalysts, such as AlCl3, ZnCl2, and Mg5(CO3)4(OH)2, 2PbCO3·Pb(OH)2 microcrystals are stable and show relatively high activity at low catalyst amount. When the reaction was carried out at 180 12, with a molar ratio of phenol to DMC of 2:1, a reaction time 14 h, and a catalyst amount 0.2% (molar ratio to phenol), the selectivity of DPC and methyl phenyl carbonate (MPC) was 14.7% and 78.8%, respectively.
文摘This paper presents a study of the quasistatic and dynamic deformation behaviors of conventional and microalloyed medium-carbon steels in a wide temperature range. As strain rate increased, the flow stress increased at room temperature, but occasionally did not at elevated temperatures. The flow stress of the microalloyed steel containing precipitates was less sensitive to strain rate at room temperature than that of the conventional steel due to a relatively larger activation length. Microstructural observation of the steels deformed after compression test indicated that inhomogeneous deformation became more serious with increasing strain rate and temperature without fracturing in the highly localized region.
文摘This investigation describes the one step preparation of potassium carbonate by electrolysis of potas-sium chloride solution in electrolyzers with various Nation membranes.Potassium bicarbonate solution wasfed to the cathode compartment,where it was converted into carbonate by reaction with the hydroxideformed at cathode.Because of the low OH^- concentration in the cathode compartment,the back migrationof OH^- through the membrane was almost negligible,resulting in a higher current efficiency,say 90% or more.In this study,electroconductivity,mass transfer,current efficiency and cell voltage were measured.Thefeasibility of the process was discussed and the optimal conditions examined.
文摘Recently, Hsieh and Horng [1] published the paper entitled as above. In section 3 results and discussion, the authors mentioned the first and the second order kinetic models without any quotations. In fact these two kinetic models have been published [2-5]. In order to distinguish a kinetics model based on the ad- sorption capacity of a solid from the one based on the concentration of a solution, Lagergren's first-order rate equation has been called pseudo-first-order [6-7]. The Lagergren's equation has been widely cited, but there are far more mistakes made in the quotation and in the reference section of papers, including the title, the author's name, journal title, year of publishing, volume, and page number [3]. In addition, the second order kinetic expression for the adsorption systems of divalent metal ions using sphagnum moss peat has been reported by Ho [8].
文摘Fiber-reinforced polymer composite materials have become materials of choice for manufacturing application due to their high specific stiffness, strength and fatigue life, low density and thermal expansion coefficient. However, there are some types of defects such as porosity that form during the manufacturing processes of composites and alter their mechanical behavior and material properties. In his study, hand lay-up was conducted to fabricate samples of carbon fiber-reinforced polymer composites with three different vacuum levels in order to vary porosity content. Nondestructive evaluation, destructive techniques and mechanical testing were conducted. Nondestructive evaluation results showed the trend in percentages of porosity through-thickness. Serial sectioning images revealed significant details about the composite’s internal structure such as the volume, morphology and distribution of porosity. Mechanical testing results showed that porosity led to a decrease in both Mode I static interlaminar fracture toughness and Mode I cyclic strain energy release rate fatigue life. The fractographic micrographs showed that porosity content increased as the vacuum decreased, and it drew a relationship between fracture mechanisms and mechanical properties of the composite under different modes of loading as a result of the porosity effects. Finally, in order to accurately quantify porosity percentages included in the samples of different vacuum levels, a comparison was made between the parameters and percentages resulted from the nondestructive evaluation and mechanical testing and the features resulted from fractography and serial sectioning.
文摘The frictional resistance and machining quality when cutting carbon fiber reinforced plastics (CFRP) laminates are associated with tribological behavior of tool materials. In the present study, the tribological properties of three types of monolayer microcrystalline diamond (MCD) coatings, nanocrystalline diamond (NCD) coatings and dual-layer MCD/NCD coatings sliding against CFRP are investigated under dry lubricated conditions using the rotational friction tester. The coefficients of friction (COF), wear rate and worn surfaces of the contacted surfaces are analyzed for the MCD-CFRP, NCD-CFRP and MCD/NCD-CFRP contacting pairs. The results show that compared with the monolayer MCD and NCD, the bilayer of MCD/NCD coating displays the lowest COF with the value of ~0.13, it is 42% and 55% of the values for MCD and NCD coatings. Due to the rough surfaces of MCD, the wear debris of CFRP on MCD samples exhibits the plowing effect. While for the NCD and MCD/NCD samples, the wear fragments display the planar shapes. The wear rate of CFRP against MCD is more than twice that of CFRP against NCD, due to the excellent loading capacity. While the wear rate of CFRP against MCD/NCD is about twice than that of CFRP-NCD pairs. The bilayer of MCD/NCD combines the excellent advantages of high hardness of MCD and the smooth surface of NCD. It shows the broad application potential for the bilayer coatings.
文摘By taking 40Cr as a specific object, cold extrusion deformation behavior of medium carbon steel after quenching and tempering was studied by experimental works. The influence of deformation extent (10%-50%), cone angle of die (90 °-120 °), hardness after quenching and tempering (HRC21-29) and lubricated condition on the forming load was analyzed. The results show that there is no central bursting and micro crack in the inner of the extruded specimen, and the forming quality is good. The double-peak phenomenon takes place at the front-end of the specimen; the double-peak index increases with deformation extent, and larger deformation can avoid the double-peak phenomenon. The deformation extent is the most important influencing factor, and the lubricated condition almost has no influence, which means that the phosphate coating plus soap process is still a proper lubrication method for cold extrusion of medium carbon steel after quenching and tempering. By investigating the microscopic structure before and after deformation, the initial equiaxed grain is elongated in the extrusion direction, and this feature is more significant at the front-end of specimen.
文摘Better dealing with carbon issues can support the management of current greenhouse gas emissions while achieving energy economic diversification and energy security. Carbon dioxide displacement has become the most acknowledged and practical method in enhanced oil recovery system. This is because of its oil sweep efficiency and ability to reduce the level of greenhouse gas emission. Nevertheless, it would lead to the organic solid phase deposition, which causes the changes of the wettability and the damages of wellbores and reservoirs. In this study, we used slim tube test and component test to research the dynamic characteristics of displacement process. In addition, the mechanism of porous media blockage was also investigated. Results show that when the displacement pressure closed to the minimum miscibility pressure, reservoir blockage in pore throat could happen. Component test characterizes that during near miscible displacement process, the components of oil sample varied obviously, the variation range of peak component carbon marks fluctuated strongly. Crude oil component differentiation could happen after carbon dioxide fully contacted with oil. Besides, the rapid extraction mechanism of aromatic hydrocarbons played a significant role in this process under such condition. The reason is that the solubility of saturated hydrocarbons to asphaltene and non-hydrocarbons is obviously weaker than aromatic hydrocarbons. Controlling the pressure is considered as an important link to prevent the occurrence of blocking in the carbon dioxide multiphase and multicomponent displacement process.