The genetic mechanisms of the secondary pore development zones in the lower part of the fourth member of the Shahejie Formation(Es_4/6x) were studied based on core observations,petrographic analysis,fluid inclusion...The genetic mechanisms of the secondary pore development zones in the lower part of the fourth member of the Shahejie Formation(Es_4/6x) were studied based on core observations,petrographic analysis,fluid inclusion analysis,and petrophysical measurements along with knowledge of the tectonic evolution history,organic matter thermal evolution,and hydrocarbon accumulation history.Two secondary pore development zones exist in Es_4~x,the depths of which range from 4200 to 4500 m and from 4700 to 4900 m,respectively.The reservoirs in these zones mainly consist of conglomerate in the middle fan braided channels of nearshore subaqueous fans,and the secondary pores in these reservoirs primarily originated from the dissolution of feldspars and carbonate cements.The reservoirs experienced ‘‘alkaline–acidic–alkaline–acidic–weak acidic'',‘‘normal pressure–overpressure–normal pressure'',and‘‘formation temperature increasing–decreasing–increasing'' diagenetic environments.The diagenetic evolution sequences were ‘‘compaction/gypsum cementation/halite cementation/pyrite cementation/siderite cementation–feldspar dissolution/quartz overgrowth–carbonate cementation/quartz dissolution/feldspar overgrowth–carbonate dissolution/feldspar dissolution/quartz overgrowth–pyrite cementation and asphalt filling''.Many secondary pores(fewer than the number of primary pores) were formed by feldspar dissolution during early acidic geochemical systems with organic acid when the burial depth of the reservoirs was relatively shallow.Subsequently,the pore spaces wereslightly changed because of protection from early hydrocarbon charging and fluid overpressure during deep burial.Finally,the present secondary pore development zones were formed when many primary pores were filled by asphalt and pyrite from oil cracking in deeply buried paleoreservoirs.展开更多
Ordovician carbonate buried-hill reservoir beds in the Hetianhe (和田河) gas field, located in the Mazhatage (玛扎塔塔) structural belt on the southern margin of the Bachu (巴楚) faulted uplift, southwestern Tar...Ordovician carbonate buried-hill reservoir beds in the Hetianhe (和田河) gas field, located in the Mazhatage (玛扎塔塔) structural belt on the southern margin of the Bachu (巴楚) faulted uplift, southwestern Tarim basin, were studied. Based on field survey, core and slice observation, the general characteristics of carbonate buried-hill reservoir beds and specifically Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were discussed. The karst zone of the reservoir beds in Hetianhe gas field was divided into superficial karst zone, vertical infiltration karst zone, lower subsurface flow karst zone, and deep sluggish flow zone from top to bottom. The effects of faulting on Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were obvious. The faulting intensified the karstification and increased the depth of denudation. Faulting and subsequent fracture growth modified the reservoir beds and improved the physical property and quality of the reservoir beds. Moreover, faulting enhanced the development of the dissolution holes and fractures and increased the thickness of the effective reservoir beds. Meanwhile, faulting made the high porosity-permeability carbonate belts, which created conditions for the hydrocarbon accumulation, develop near the fault zone.展开更多
基金National Natural Science Foundation of China (Grant No.41102058,Grant No.U1262203,and Grant No.41202075)the National Science and Technology Special Grant (Grant No.2011ZX05006-003)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.14CX02181A,Grant No.15CX08001A,and Grant No.15CX0 5007A)Shandong Natural Science Foundation (Grant No.ZR2011DQ017)
文摘The genetic mechanisms of the secondary pore development zones in the lower part of the fourth member of the Shahejie Formation(Es_4/6x) were studied based on core observations,petrographic analysis,fluid inclusion analysis,and petrophysical measurements along with knowledge of the tectonic evolution history,organic matter thermal evolution,and hydrocarbon accumulation history.Two secondary pore development zones exist in Es_4~x,the depths of which range from 4200 to 4500 m and from 4700 to 4900 m,respectively.The reservoirs in these zones mainly consist of conglomerate in the middle fan braided channels of nearshore subaqueous fans,and the secondary pores in these reservoirs primarily originated from the dissolution of feldspars and carbonate cements.The reservoirs experienced ‘‘alkaline–acidic–alkaline–acidic–weak acidic'',‘‘normal pressure–overpressure–normal pressure'',and‘‘formation temperature increasing–decreasing–increasing'' diagenetic environments.The diagenetic evolution sequences were ‘‘compaction/gypsum cementation/halite cementation/pyrite cementation/siderite cementation–feldspar dissolution/quartz overgrowth–carbonate cementation/quartz dissolution/feldspar overgrowth–carbonate dissolution/feldspar dissolution/quartz overgrowth–pyrite cementation and asphalt filling''.Many secondary pores(fewer than the number of primary pores) were formed by feldspar dissolution during early acidic geochemical systems with organic acid when the burial depth of the reservoirs was relatively shallow.Subsequently,the pore spaces wereslightly changed because of protection from early hydrocarbon charging and fluid overpressure during deep burial.Finally,the present secondary pore development zones were formed when many primary pores were filled by asphalt and pyrite from oil cracking in deeply buried paleoreservoirs.
基金supported by the National Basic Research Program of China (No. 2005CB422108)the National Natural Science Foundation of China (No. 40672092)
文摘Ordovician carbonate buried-hill reservoir beds in the Hetianhe (和田河) gas field, located in the Mazhatage (玛扎塔塔) structural belt on the southern margin of the Bachu (巴楚) faulted uplift, southwestern Tarim basin, were studied. Based on field survey, core and slice observation, the general characteristics of carbonate buried-hill reservoir beds and specifically Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were discussed. The karst zone of the reservoir beds in Hetianhe gas field was divided into superficial karst zone, vertical infiltration karst zone, lower subsurface flow karst zone, and deep sluggish flow zone from top to bottom. The effects of faulting on Ordovician carbonate buried-hill reservoir beds in the Hetianhe gas field were obvious. The faulting intensified the karstification and increased the depth of denudation. Faulting and subsequent fracture growth modified the reservoir beds and improved the physical property and quality of the reservoir beds. Moreover, faulting enhanced the development of the dissolution holes and fractures and increased the thickness of the effective reservoir beds. Meanwhile, faulting made the high porosity-permeability carbonate belts, which created conditions for the hydrocarbon accumulation, develop near the fault zone.