期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Origin,migration,and accumulation of carbon dioxide in the East Changde Gas Field,Songliao Basin,northeastern China
1
作者 Yu-Ming Liu Yue Dong +3 位作者 Zhen-Hua Rui Xue-Song Lu Xin-Mao Zhou Li-Chun Wei 《Petroleum Science》 SCIE CAS CSCD 2018年第4期695-708,共14页
CO2reservoirs are widely distributed within the Yingcheng Formation in the Songliao Basin, but the extreme horizontal heterogeneity of CO2content causes difficulties in the exploration and exploitation of methane. For... CO2reservoirs are widely distributed within the Yingcheng Formation in the Songliao Basin, but the extreme horizontal heterogeneity of CO2content causes difficulties in the exploration and exploitation of methane. Former studies have fully covered the lithology, structure, and distribution of the reservoirs high in CO2content, but few are reported about migration and accumulation of CO2. Using the East Changde Gas Field as an example, we studied the accumulation mechanisms of CO2 gas. Two original types of accumulation model are proposed in this study. The fault-controlled accumulation model refers to gas accumulation in the reservoir body that is cut by a basement fault(the West Xu Fault), allowing the hydrocarbon gas generated in the lower formation to migrate into the reservoir body through the fault, which results in a relatively lower CO2content. The volcanic conduit-controlled accumulation model refers to a reservoir body that is not cut by the basement fault, which prevents the hydrocarbon gas from being mixed in and leads to higher CO2contents. This conclusion provides useful theories for prediction of CO2distribution in similar basins and reservoirs. 展开更多
关键词 carbon dioxide reservoir Mantle-derived CO2 Faults reservoir formation mechanism East Changde Gas Field Songliao Basin
下载PDF
Three-dimensional analysis of a faulted CO2 reservoir using an Eshelby-Mori-Tanaka approach to rock elastic properties and fault permeability 被引量:1
2
作者 Ba Nghiep Nguyen Zhangshuan Hou +1 位作者 George V.Last Diana H.Bacon 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第6期828-845,共18页
This work develops a three-dimensional(3D) multiscale model to analyze a complex carbon dioxide(CO_2) faulted reservoir that includes some key geologic features of the San Andreas and nearby faults southwest of the Ki... This work develops a three-dimensional(3D) multiscale model to analyze a complex carbon dioxide(CO_2) faulted reservoir that includes some key geologic features of the San Andreas and nearby faults southwest of the Kimberlina site.The model uses the STOMP-CO2 code for flow modeling that is coupled to the ABAQUS~ finite element package for geomechanical analysis.A 3D ABAQUS~ finite element model is developed that contains a large number of 3D solid elements with two nearly parallel faults whose damage zones and cores are discretized using the same continuum elements.Five zones with different mineral compositions are considered:shale,sandstone,fault damaged sandstone,fault damaged shale,and fault core.Rocks' elastic properties that govern their poroelastic behavior are modeled by an Eshelby-Mori-Tanaka approach(EMTA).which can account for up to 15 mineral phases.The permeability of fault damage zones affected by crack density and orientations is also predicted by an EMTA formulation.A STOMP-CO2 grid that exactly maps the ABAQUS~ finite element model is built for coupled hydromechanical analyses.Simulations of the reservoir assuming three different crack pattern situations(including crack volume fraction and orientation) for the fault damage zones are performed to predict the potential leakage of CO_2 due to cracks that enhance the permeability of the fault damage zones.The results illustrate the important effect of the crack orientation on fault permeability that can lead to substantial leakage along the fault attained by the expansion of the CO_2 plume.Potential hydraulic fracture and tendency for the faults to slip are also examined and discussed in terms of stress distributions and geomechanical properties. 展开更多
关键词 carbon dioxide(CO_2) reservoir Geomechanical modeling MINERALOGY HOMOGENIZATION Fault LEAKAGE SLIP Elastic properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部