期刊文献+
共找到348篇文章
< 1 2 18 >
每页显示 20 50 100
Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe)octahedrons 被引量:1
1
作者 Hao Yuan Xinhai Sun +2 位作者 Shuai Zhang Weilong Shi Feng Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期298-309,共12页
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)... The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts. 展开更多
关键词 carbon dots MIL-101(Fe) PHOTOCATALYTIC Persulfate activation Tetracycline degradation
下载PDF
Accelerating H^(*)desorption of hollow Mo_(2)C nanoreactor via in-situ grown carbon dots for electrocatalytic hydrogen evolution
2
作者 Mengmeng Liu Yuanyuan Jiang +3 位作者 Zhuwei Cao Lulu Liu Hong Chen Sheng Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期464-471,共8页
Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improv... Molybdenum carbide(Mo_(2)C)is a promising non-noble metal electrocatalyst with electronic structures similar to Pt for hydrogen evolution reaction(HER).However,strong H^(*)adsorption at the Mo sites hinders the improvement of HER performance.Here,we synthesized monodisperse hollow Mo_(2)C nanoreactors,in which the carbon dots(CD)were in situ formed onto the surface of Mo_(2)C through carburization reactions.According to finite element simulation and analysis,the CD@Mo_(2)C possesses better mesoscale diffusion properties than Mo_(2)C alone.The optimized CD@Mo_(2)C nanoreactor demonstrates superior HER performance in alkaline electrolyte with a low overpotential of 57 mV at 10 mA cm^(−2),which is better than most Mo_(2)C-based electrocatalysts.Moreover,CD@Mo_(2)C exhibits excellent electrochemical stability during 240 h,confirmed by operando Raman and X-ray diffraction(XRD).Density functional theory(DFT)calculations show that carbon dots cause the d-band center of CD@Mo_(2)C to shift away from Fermi level,promoting water dissociation and the desorption of H^(*).This study provides a reasonable strategy towards high-activity Mo-based HER eletrocatalysts by modulating the strength of Mo–H bonds. 展开更多
关键词 Mo_(2)C nanoreactor carbon dots H^(*)desorption Electrocatalytic hydrogen evolution
下载PDF
High sensitivity detection of baicalein by N,S co⁃doped carbon dots and their application in biofluids
3
作者 FAN Junmei LIU Wei +5 位作者 ZHU Ruitao QIN Chenxi LEI Xiaoling WANG Haotian WANG Jiao HAN Hongfei 《无机化学学报》 SCIE CAS CSCD 北大核心 2024年第10期2009-2020,共12页
In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morpholo... In this work,p⁃phenylenediamine and L⁃cysteine were used as raw materials,and water⁃soluble N,S co⁃doped carbon dots(N,S⁃CDs)with excellent performance were prepared through a one⁃step solvothermal method.The morphology and structure of N,S⁃CDs were characterized by transmission electron microscope,X⁃ray diffrac⁃tion,Fourier transform infrared spectroscopy,and X⁃ray photoelectron spectroscopy,and the basic photophysical properties were investigated via UV⁃Vis absorption spectra and fluorescence spectra.Meanwhile,the N,S⁃CDs have excellent luminescence stability with pH,ionic strength,radiation time,and storage time.Experimental results illus⁃trated the present sensor platform exhibited high sensitivity and selectivity in response to baicalein with a detection limit of 85 nmol·L-1.The quenching mechanism is proved to be the inner filter effect.In addition,this sensor can also detect baicalein in biofluids(serum and urine)with good accuracy and reproducibility. 展开更多
关键词 N S⁃carbon dots solvothermal method BAICALEIN fluorescent sensor
下载PDF
High Colloidal Stable Carbon Dots Armored Liquid Metal Nano-Droplets for Versatile 3D/4D Printing Through Digital Light Processing(DLP)
4
作者 Linan Wang Junle Zhang +8 位作者 Xi Zhang Ge Shi Yanjie He Zhe Cui Xiaomeng Zhang Peng Fu Minying Liu Xiaoguang Qiao Xinchang Pang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期432-438,共7页
Liquid metal(LM)and liquid metal alloys(LMs)possess unique physicochemical features,which have become emerging and functionalized materials that are attractive applicants in various fields.Herein,uniform LM nanodrople... Liquid metal(LM)and liquid metal alloys(LMs)possess unique physicochemical features,which have become emerging and functionalized materials that are attractive applicants in various fields.Herein,uniform LM nanodroplets armored by carbon dots(LMD@CDs)were prepared and exhibited high colloidal stability in various solvents,as well as water.After optimization,LMD@CDs can be applied as functional additives for the 3D/4D printing of hydrogel and cross-linked resin through digital light processing(DLP).The light absorption of LMD@CDs not only improved the printing accuracy,but also led to the cross-linking density differential during the post-curing process.Base on the cross-linking density differential of soft hydrogel and photothermal performance of the LM,the 3D printed objects can exhibit stimulus responses to both water and laser irradiation.Additionally,the CDs shell and LM core of LMD@CDs provide the printed objects interesting photoluminescence and electric conductivity capabilities,respectively.We deduce this versatile 3D/4D printing system would provide a new platform for the preparation of multi-functional and stimuli-responsive advance materials. 展开更多
关键词 4D printing carbon dots liquid metal nanodroplets
下载PDF
NH_(3)‑Induced In Situ Etching Strategy Derived 3D‑Interconnected Porous MXene/Carbon Dots Films for High Performance Flexible Supercapacitors 被引量:2
5
作者 Yongbin Wang Ningjun Chen +6 位作者 Bin Zhou Xuefeng Zhou Ben Pu Jia Bai Qi Tang Yan Liu Weiqing Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期271-282,共12页
2D MXene(Ti_(3)CNT_(x))has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity,ultra-high capacitance,and excellent flexibility.However,it suffers f... 2D MXene(Ti_(3)CNT_(x))has been considered as the most promising electrode material for flexible supercapacitors owing to its metallic conductivity,ultra-high capacitance,and excellent flexibility.However,it suffers from a severe restacking problem during the electrode fabrication process,limiting the ion transport kinetics and the accessibility of ions in the electrodes,especially in the direction normal to the electrode surface.Herein,we report a NH_(3)-induced in situ etching strategy to fabricate 3D-interconnected porous MXene/carbon dots(p-MC)films for high-performance flexible supercapacitor.The pre-intercalated carbon dots(CDs)first prevent the restacking of MXene to expose more inner electrochemical active sites.The partially decomposed CDs generate NH_(3)for in situ etching of MXene nanosheets toward 3D-interconnected p-MC films.Benefiting from the structural merits and the 3D-interconnected ionic transmission channels,p-MC film electrodes achieve excellent gravimetric capacitance(688.9 F g^(-1)at 2 A g^(-1))and superior rate capability.Moreover,the optimized p-MC electrode is assembled into an asymmetric solid-state flexible supercapacitor with high energy density and superior cycling stability,demonstrating the great promise of p-MC electrode for practical applications. 展开更多
关键词 Ti_(3)CNT_(x)MXene carbon dots In situ etching 3D-interconnected porous structure Flexible supercapacitors
下载PDF
Functionalized carbon dots for corrosion protection:Recent advances and future perspectives
6
作者 Li Zhao Jinke Wang +5 位作者 Kai Chen Jingzhi Yang Xin Guo Hongchang Qian Lingwei Ma Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第11期2112-2133,共22页
Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterial... Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterials,which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect,fluorescence,low toxicity,facile chemical modification,and cost-effectiveness.This study provides a comprehensive overview of the synthesis,physical and chemical properties,and anticorrosion mechanisms of functionalized CDs.First,the corrosion inhibition performance of different types of CDs is introduced,followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties.The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior.In addition,diverse functional groups on CDs can interact with Fe^(3+)and H^(+)ions generated during the corrosion process;this interaction changes their fluorescence,thereby demonstrating self-reporting behavior.Moreover,challenges and prospects for the development of CD-based corrosion protection systems are also presented. 展开更多
关键词 carbon dots corrosion protection corrosion inhibitors SELF-HEALING SELF-REPORTING
下载PDF
A recent update on development,synthesis methods,properties and application of natural products derived carbon dots
7
作者 Soumitra Sahana Anupam Gautam +1 位作者 Rajveer Singh Shivani Chandel 《Natural Products and Bioprospecting》 CSCD 2023年第1期117-137,共21页
Natural resources are practically infinitely abundant in nature,which stimulates scientists to create new materials with inventive uses and minimal environmental impact.Due to the various benefits of natural carbon do... Natural resources are practically infinitely abundant in nature,which stimulates scientists to create new materials with inventive uses and minimal environmental impact.Due to the various benefits of natural carbon dots(NCDs)from them has received a lot of attention recently.Natural products-derived carbon dots have recently emerged as a highly promising class of nanomaterials,showcasing exceptional properties and eco-friendly nature,which make them appealing for diverse applications in various fields such as biomedical,environmental sensing and monitoring,energy storage and conversion,optoelectronics and photonics,agriculture,quantum computing,nanomedicine and cancer therapy.Characterization techniques such as Photoinduced electron transfer,Aggregation-Induced-Emission(AIE),Absorbance,Fluorescence in UV-Vis and NIR Regions play crucial roles in understanding the structural and optical properties of Carbon dots(CDs).The exceptional photoluminescence properties exhibited by CDs derived from natural products have paved the way for applications in tissue engineering,cancer treatment,bioimaging,sensing,drug delivery,photocatalysis,and promising remarkable advancements in these fields.In this review,we summarized the various synthesis methods,physical and optical properties,applications,challenges,future prospects of natural products-derived carbon dots etc.In this expanding sector,the difficulties and prospects for NCD-based materials research will also be explored. 展开更多
关键词 Natural carbon dots(NCDs) Photoinduced electron transfer Aggregation-Induced-Emission(AIE) Cancer therapy FLUORESCENCE BIO-IMAGING Sensing Drug delivery
下载PDF
Surface passivation by multifunctional carbon dots toward highly efficient and stable inverted perovskite solar cells
8
作者 Qi Cao Yixin Zhang +8 位作者 Xingyu Pu Junsong Zhao Tong Wang Kui Zhang Hui Chen Xilai He Jiabao Yang Cheng Zhang Xuanhua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期9-15,I0001,共8页
Interfacial imperfections between the perovskite layer and the electron transport layer(ETL)in perovskite solar cells(PSCs)can lead to performance loss and negatively influence long-term operational stability.Here,we ... Interfacial imperfections between the perovskite layer and the electron transport layer(ETL)in perovskite solar cells(PSCs)can lead to performance loss and negatively influence long-term operational stability.Here,we introduce an interface engineering method to modify the interface between perovskite and ETL by using multifunctional carbon dots(CDs).C=O in the CDs can chelate with the uncoordinated Pb2+in the perovskite material,inhibit interfacial recombination,and enhance the performance and stability of device.In addition,–OH in CDs forms hydrogen bonds with I-and organic cation in perovskite,inhibiting light-induced I2release and organic cation volatilization,causing irreversible degradation of perovskite films,thereby enhancing the long-term operational stability of PSCs.Consequently,we achieve the champion inverted device with an efficiency of 24.02%.The CDs-treated PSCs exhibit high operational stability,and the maximum power point tracking only attenuates by 12.5%after 1000 h.Interfacial modification engineering supported by multifunctional quantum dots can accelerate the road to stable PSCs. 展开更多
关键词 Interfacial engineering carbon dots Non-radiative recombination
下载PDF
Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes 被引量:13
9
作者 Zhi Yang Zhaohui Li +6 位作者 Minghan Xu Yujie Ma Jing Zhang Yanjie Su Feng Gao Hao Wei Liying Zhang 《Nano-Micro Letters》 SCIE EI CAS 2013年第4期247-259,共13页
Carbon dots(CDs), as a new member of carbon nanomaterial family, have aroused great interest since their discovery in 2004. Because of their outstanding water solubility, high sensitivity and selectivity to target ana... Carbon dots(CDs), as a new member of carbon nanomaterial family, have aroused great interest since their discovery in 2004. Because of their outstanding water solubility, high sensitivity and selectivity to target analytes, low toxicity, favorable biocompatibility, and excellent photostability, researchers from diverse disciplines have come together to further develop the fundamental properties of CDs. Many methods for the production of CDs have been reported, therein, hydrothermal and solvothermal technology needs simple equipments, and microwave synthesis needs less reaction time, hence these methods become current common synthesis methods, in which many precursors have been applied to produce CDs. Due to their excellent fluorescence, CDs have made impressive strides in sensitivity and selectivity to a diverse array of salt ions,organic/biological molecules and target gases. The development of CDs as nanoprobes is still in its infancy, but continued progress may lead to their integration into environmental and biological applications. Hydrothermal,solvothermal, and microwave synthesis of fluorescent carbon dots and their detection applications as nanoprobes in salt ions, organic/biological molecules, and target gases will be reviewed. 展开更多
关键词 carbon dots HYDROTHERMAL SOLVOTHERMAL Microwave NANOPROBE
下载PDF
Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications 被引量:12
10
作者 Kok Ken Chan Stephanie Hui Kit Yap Ken-Tye Yong 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期268-313,共46页
Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent pho... Over the past decade, carbon dots have ignited a burst of interest in many different fields, including nanomedicine, solar energy, optoelectronics, energy storage,and sensing applications, owing to their excellent photoluminescence properties and the easiness to modify their optical properties through doping and functionalization. In this review, the synthesis, structural and optical properties,as well as photoluminescence mechanisms of carbon dots are first reviewed and summarized. Then, we describe a series of designs for carbon dot-based sensors and the different sensing mechanisms associated with them.Thereafter, we elaborate on recent research advances on carbon dot-based sensors for the selective and sensitive detection of a wide range of analytes, including heavy metals, cations, anions, biomolecules, biomarkers,nitroaromatic explosives, pollutants, vitamins, and drugs.Lastly, we provide a concluding perspective on the overall status, challenges, and future directions for the use of carbon dots in real-life sensing. 展开更多
关键词 carbon dots Heavy metal sensing Photoluminescence mechanism Sensing mechanism Sensor design
下载PDF
Corrosion protection investigations of carbon dots and polydopamine composite coating on magnesium alloy 被引量:8
11
作者 H.D.Zhang A.Y.Chen +2 位作者 B.Gan H.Jiang L.J.Gu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1358-1367,共10页
A composite coating of nitrogen-doped carbon dots(N–CDs)and polydopamine(PDA)was prepared on magnesium alloy by combining electrodeposition with dip coating methods.The microstructure of the N–CDs/PDA composite coat... A composite coating of nitrogen-doped carbon dots(N–CDs)and polydopamine(PDA)was prepared on magnesium alloy by combining electrodeposition with dip coating methods.The microstructure of the N–CDs/PDA composite coating,including composition,surface morphology,and crystalline structure,is characterized by Raman spectroscopy,scanning electron microscopy,transmission electron microscopy,and X-ray photoelectron spectroscopy,respectively.The corrosion protection performances of the composite coating are evaluated by potentiodynamic polarization tests,electrochemical impedance spectroscopy,and salt spray tests.The effect of the particle size of the N–CDs on the corrosion performance is also investigated.The results show that the corrosion performance of the N–CDs coatings are enhanced with the increase of the particle sizes.Furthermore,an obvious self-healing performance is observed on the surface of the N–CDs/PDA composite coating.These results indicate that N–CDs/PDA composite coating can improve the corrosion performance of the Mg alloy,and open a new design direction for the protective coating of metallic materials. 展开更多
关键词 Magnesium alloy N-doped carbon dots Particle size DOPAMINE Coating Corrosion resistance
下载PDF
Interface electron collaborative migration of Co–Co3O4/carbon dots:Boosting the hydrolytic dehydrogenation of ammonia borane 被引量:8
12
作者 Han Wu Min Wu +5 位作者 Boyang Wang Xue Yong Yushan Liu Baojun Li Baozhong Liu Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期43-53,I0002,共12页
Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we re... Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate. 展开更多
关键词 Ammonia borane Hydrogen evolution Co-Co3O4 interface carbon dots Nanoparticles
下载PDF
Green and Near-Infrared Dual-Mode Afterglow of Carbon Dots and Their Applications for Confidential Information Readout 被引量:9
13
作者 Yuci Wang Kai Jiang +4 位作者 Jiaren Du Licheng Zheng Yike Li Zhongjun Li Hengwei Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第12期148-162,共15页
Near-infrared(NIR),particularly NIR-containing dual-/multimode afterglow,is very attractive in many fields of application,but it is still a great challenge to achieve such property of materials. Herein,we report a fac... Near-infrared(NIR),particularly NIR-containing dual-/multimode afterglow,is very attractive in many fields of application,but it is still a great challenge to achieve such property of materials. Herein,we report a facile method to prepare green and NIR dual-mode afterglow of carbon dots(CDs) through in situ embedding o-CDs(being prepared from o-phenylenediamine) into cyanuric acid(CA) matrix(named o-CDs@CA). Further studies reveal that the green and NIR afterglows of o-CDs@CA originate from thermal activated delayed fluorescence(TADF) and room temperature phosphorescence(RTP) of o-CDs,respectively. In addition,the formation of covalent bonds between o-CDs and CA,and the presence of multiple fixation and rigid e ects to the triplet states of o-CDs are confirmed to be critical for activating the observed dual-mode afterglow. Due to the shorter lifetime and insensitiveness to human vision of the NIR RTP of o-CDs@CA,it is completely covered by the green TADF during directly observing. The NIR RTP signal,however,can be readily captured if an optical filter(cut-o wavelength of 600 nm) being used. By utilizing these unique features,the applications of o-CDs@CA in anti-counterfeiting and information encryption have been demonstrated with great confidentiality. Finally,the as-developed method was confirmed to be applicable to many other kinds of CDs for achieving or enhancing their afterglow performances. 展开更多
关键词 carbon dots Dual-mode afterglow Room temperature phosphorescence Thermal activated delayed fluorescence Information security
下载PDF
Facile and Scalable Preparation of Fluorescent Carbon Dots for Multifunctional Applications 被引量:9
14
作者 Dan Wang Zhiyong Wang +4 位作者 Qiuqiang Zhan Yuan Pu Jie-xin wang Neil R. Foster Liming Dai 《Engineering》 SCIE EI 2017年第3期402-408,共7页
The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ... The synthesis of fluorescent nanomaterials has received considerable attention due to the great potential of these materials for a wide range of applications, from chemical sensing through bioimaging to optoelectron- ics. Herein, we report a facile and scalable approach to prepare fluorescent carbon dots (FCDs) via a one-pot reaction of citric acid with ethylenediamine at 150 ℃ under ambient air pressure. The resultant FCDs pos- sess an optical bandgap of 3.4 eV and exhibit strong excitation-wavelength-independent blue emission (λEm = 450 nm) under either one- or two-photon excitation. Owing to their low cytotoxicity and long fluorescence lifetime, these FCDs were successfully used as internalized fluorescent probes in human cancer cell lines (HeLa cells) for two-photon excited imaging of cells by fluorescence lifetime imaging microscopy with a high-contrast resolution. They were also homogenously mixed with commercial inks and used to draw fluo- rescent patterns on normal papers and on many other substrates (e.g., certain flexible plastic films, textiles, and clothes). Thus, these nanomaterials are promising for use in solid-state fluorescent sensing, security labeling, and wearable optoelectronics. 展开更多
关键词 SCALABLE carbon dots TWO-PHOTON Fluorescence lifetime imaging PATTERNING
下载PDF
Amorphous CoOx coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction 被引量:4
15
作者 Wanjun Sun Xiangyu Meng +5 位作者 Chunjiang Xu Junyi Yang Xiangming Liang Yinjuan Dong Congzhao Dong Yong Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第12期1826-1836,共11页
Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and g... Cobalt-based oxides,with high abundance,good stability and excellent catalytic performance,are regarded as promising photocatalysts for artificial photosynthetic systems to alleviate foreseeable energy shortages and global warming.Herein,for the first time,a series of novel spongy porous CDs@CoOx materials were synthesized to act as an efficient and stable bifunctional photocatalyst for water oxidation and CO2 reduction.Notably,the preparation temperatures visibly influence the morphologies and photocatalytic performances of the CDs@CoOx.Under the optimal conditions,a maximum O2 yield of 40.4% and pretty apparent quantum efficiency(AQE)of 58.6% at 460 nm were obtained over CDs@CoOx-300 for water oxidation.Similarly,the optimized sample CDs@CoOx-300 manifests significant enhancement on the CO2-to-CO conversion with a high selectivity of 89.3% and CO generation rate of 8.1μmol/h,which is superior to most previous cobalt-based catalysts for CO2 reduction.The composite CDs@CoOx-300 not only exposes more active sites but also facilitates electron transport,which results in excellent photocatalytic activity.In addition,the boosted photocatalytic behavior is attributed to the synergistic effect between CoOx and CDs,which was verified by the photocatalytic activity control experiments and electrochemical characterization.The work offers a novel strategy to fabricate a high performance bifunctional photocatalyst for water oxidation and CO2 reduction. 展开更多
关键词 carbon dots coupled CoOx Bifunctional photocatalyst Water oxidation CO2 reduction Synergistic effect
下载PDF
Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation 被引量:4
16
作者 Jie Wu Yunjie Zhou +6 位作者 Haodong Nie Kaiqiang Wei Hui Huang Fan Liao Yang Liu Mingwang Shao Zhenhui Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期61-67,I0003,共8页
The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(P... The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design. 展开更多
关键词 Pt-based alloys carbon dots Interface electron transfer Interface catalytic kinetics Hydrogen oxidation reaction
下载PDF
Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanoparticles as efficient electrocatalysts for oxygen reduction 被引量:3
17
作者 Yaojia Cheng Haoqiang Song +5 位作者 Jingkun Yu Jiangwei Chang Geoffrey I.N.Waterhouse Zhiyong Tang Bai Yang Siyu Lu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第9期2443-2452,共10页
The sluggish kinetics of oxygen reduction reaction(ORR)hinders the commercialization of Zn‐air batteries(ZABs).Manipulating the electronic structure of electrocatalysts to optimize the adsorption energy of oxygen‐co... The sluggish kinetics of oxygen reduction reaction(ORR)hinders the commercialization of Zn‐air batteries(ZABs).Manipulating the electronic structure of electrocatalysts to optimize the adsorption energy of oxygen‐containing intermediates during the 4e–ORR offers a practical route toward improving ORR kinetics.Herein,we designed a novel ORR electrocatalyst containing Co single atoms and nanoparticles supported by carbon dots‐derived carbon nanoflowers(Co SAs/NPs CNF).Co SAs/NPs CNF possessed a very high ORR activity(E_(1/2) of the Co SAs/NPs CNF catalyst is 0.83 V(vs.RHE)),and outstanding catalytic performance and stability when used as the air‐electrode catalyst in rechargeable ZABs(152.32 mW cm^(-2),1000.58 mWh gZn^(–1),and over 1300 cycles at a current density of 5 mA cm^(-2)).The Co SAs and Co NPs cooperated to improve electron and proton transfer processes during ORR.Theoretical calculations revealed that the presence of adjacent Co NPs optimized the electronic structure of the isolated Co‐N_(4) sites,significantly lowering the energy barriers for the rate‐determining step in ORR(adsorption of*OOH)and thereby delivering outstanding ORR performance.This work reveals that the combination of supported single‐atom sites and metal nanoparticles can be highly beneficial for ORR electrocatalysis,outperforming catalysts containing only Co SAs or Co NPs. 展开更多
关键词 carbon dots Co single atom Co nanoparticle Oxygen reduction reaction Zn-air battery
下载PDF
Natural Stibnite for Lithium‑/Sodium‑Ion Batteries:Carbon Dots Evoked High Initial Coulombic Efficiency 被引量:3
18
作者 Yinger Xiang Laiqiang Xu +7 位作者 Li Yang Yu Ye Zhaofei Ge Jiae Wu Wentao Deng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期208-228,共21页
The application of Sb_(2)S_(3)with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency(ICE).In this work,natural ... The application of Sb_(2)S_(3)with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency(ICE).In this work,natural stibnite modified by carbon dots(Sb_(2)S_(3)@xCDs)is elaborately designed with high ICE.Greatly,chemical processes of local oxidation–partial reduction–deep coupling for stibnite reduction of CDs are clearly demonstrated,confirmed with in situ high-temperature X-ray diffraction.More impressively,the ICE for lithium-ion batteries(LIBs)is enhanced to 85%,through the effect of oxygen-rich carbon matrix on C–S bonds which inhibit the conversion of sulfur to sulfite,well supported by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations.Not than less,it is found that Sb–O–C bonds existed in the interface effectively promote the electronic conductivity and expedite ion transmission by reducing the bandgap and restraining the slip of the dislocation.As a result,the optimal sample delivers a tremendous reversible capacity of 660 mAh g^(−1)in LIBs at a high current rate of 5 A g^(−1).This work provides a new methodology for enhancing the electrochemical energy storage performance of metal sulfides,especially for improving the ICE. 展开更多
关键词 carbon dots Sb_(2)S_(3) Initial Coulombic efficiency Interfacial bond ANODE
下载PDF
Carbon dots derived from Poria cocos polysaccharide as an effective“on-off”fluorescence sensor for chromium(Ⅵ)detection 被引量:3
19
作者 Qianqian Huang Qianqian Bao +4 位作者 Chengyuan Wu Mengru Hu Yunna Chen Lei Wang Weidong Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2022年第1期104-112,共9页
Chromium is a harmful contaminant showing mutagenicity and carcinogenicity.Therefore,detection of chromium requires the development of low-cost and high-sensitivity sensors.Herein,blue-fluorescent carbon quantum dots ... Chromium is a harmful contaminant showing mutagenicity and carcinogenicity.Therefore,detection of chromium requires the development of low-cost and high-sensitivity sensors.Herein,blue-fluorescent carbon quantum dots were synthesized by one-step hydrothermal method from alkali-soluble Poria cocos polysaccharide,which is green source,cheap and easy to obtain,and has no pharmacological activity due to low water solubility.These carbon quantum dots exhibit good fluorescence stability,water solubility,anti-interference and low cytotoxicity,and can be specifically combined with the detection of Cr(Ⅵ)to form a non-fluorescent complex that causes fluorescence quenching,so they can be used as a label-free nanosensor.High-sensitivity detection of Cr(Ⅵ)was achieved through internal filtering and static quenching effects.The fluorescence quenching degree of carbon dots fluorescent probe showed a good linear relationship with Cr(Ⅵ)concentration in the range of 1-100μM.The linear equation was F;/F=0.9942+0.01472[Cr(Ⅵ)](R;=0.9922),and the detection limit can be as low as 0.25μM(S/N=3),which has been successfully applied to Cr(Ⅵ)detection in actual water samples herein. 展开更多
关键词 carbon dots Alkali-soluble Poria cocos polysaccharide Cr(Ⅵ)detection Internal filtering effect Static quenching effect
下载PDF
A review of carbon dots and their composite materials for electrochemical energy technologies 被引量:4
20
作者 Yiming Liu Swagata Roy +3 位作者 Samrat Sarkar Jiaqiang Xu Yufeng Zhao Jiujun Zhang 《Carbon Energy》 CAS 2021年第5期795-826,共32页
Carbon dots(CDs)and their composites as energy storage materials and electrocatalysts have emerged as new types of quasi-zero-dimensional carbon materials.CDs can provide a large specific surface area,numerous electro... Carbon dots(CDs)and their composites as energy storage materials and electrocatalysts have emerged as new types of quasi-zero-dimensional carbon materials.CDs can provide a large specific surface area,numerous electron-electron hole pairs,adjustable heteroatom doping,rich surface functional groups,and so on.However,the roles and functional mechanisms of CDs and their composite materials in the enhancement of electrochemical performance remain unclear and need to be understood in depth.Based on the most recent literature,this paper comprehensively reviews the synthesis methods and applications of various categories of CDs and their composites as electrode materials of supercapacitors,lithium-ion batteries,sodium-ion batteries,and potassium-ion batteries,and as electrocatalysts for hydrogen evolution,oxygen evolution,and oxygen reduction reactions in metal-air batteries,fuel cells,and water electrolysis.To facilitate further research and development,several important aspects related to CDs and their composite materials are summarized with analysis of the technical challenges in practical applications and discussion of the possible development perspectives. 展开更多
关键词 carbon dots ELECTROCATALYSIS energy storage PREPARATION
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部