The immobilized photocatalyst, TiO2 film supported on activated carbon fibers (TiO2/ACFs) prepared with molecular adsorption-deposition (MAD), exhibits high stability in cyclic photodegradation runs. The interposition...The immobilized photocatalyst, TiO2 film supported on activated carbon fibers (TiO2/ACFs) prepared with molecular adsorption-deposition (MAD), exhibits high stability in cyclic photodegradation runs. The interposition fixing structure between TiO2 film and carbon fiber was investigated by means of SEM-EDX, XRD, XPS and FTIR, and a model was proposed to explain this structure. With SEM examination of carbon fiber surface after removing the deposited TiO2 film, a residual TiO2 super-thin film was found to exist still. By determining surface groups on ACFs, titanium sulfate (Ti2(SO4)3) in burnt remainders of the TiO2/ACFs was thought to be formed with an interfacial reaction between TiO2 film and carbon fibers. These provide some evidence of firm attachment of TiO2 film to carbon fiber surface. In the consideration of characteristics of the MAD, the deposition mechanism of TiO2 film on ACFs was proposed, and the interposition fixing structure was inferred to intercrossedly form between TiO2 film and ACFs’ surface. This structure leaded to firm attachment and high stability of the TiO2 film.展开更多
3-methyl-4-nitrophenol (MNP) is the main by-product of the organophosphate insecticide fenitrothion (FT), used in locust control. MNP is highly toxic because it is an endocrine disruptor and then may cause adverse in ...3-methyl-4-nitrophenol (MNP) is the main by-product of the organophosphate insecticide fenitrothion (FT), used in locust control. MNP is highly toxic because it is an endocrine disruptor and then may cause adverse in the biological systems. Then, it is necessary to develop analytical methods for determination of this pollutant in the environment. In this sense, we reported herein the development of an electrochemical sensor for the detection of 3-methyl-4-nitrophenol (MNP), one of the metabolites of fenitrothion (FT), by using naked and modified carbon fiber microelectrode (CFME) by nickel tetrasulfonated phthalocyanine polymer (CFME/p-NiTSPc). The voltammogram showed that MNP presents one irreversible anodic peak corresponding to the oxidation of the phenol group at 0.9 V vs Ag/AgCl. The effect of pH of the buffer on the peak current and SWV parameters such as frequency, scan increment and pulse amplitude were investigated in order to optimize the electrochemical response of the sensor. The obtained results lead to the following optimum value: pH = 6;frequency = 25 Hz, pulse amplitude = 50 mV, scan increment = 10 mV. With these optimum values, the calibration curves show that the peak current varied linearly upon MNP concentration leading to a limit of detection (LoD) for naked CFME close to 3 μg/L whereas for CFME modified by p-NiTSPc, it reaches 0.75 μg/L. This results prove that the presence of p-NiTSPc increasing the sensitivity of the sensor could be used to monitor 3-methyl-4-nitrophenol residue in real matrix.展开更多
Electrocatalytic synthesis of value-added chemicals is attracting significant research attention owing to its mild reaction conditions, environmental benignity, and potentially scalable application to organic syntheti...Electrocatalytic synthesis of value-added chemicals is attracting significant research attention owing to its mild reaction conditions, environmental benignity, and potentially scalable application to organic synthetic chemistry. Herein, we report the preparation of a single-crystalline NiS2 nanostructure film of N 50 nm thickness grown directly on a carbon fiber doth (NiSJCFC) by a facile vapor-phase hydrothermal (VPH) method. NiSJCFC as an electrocatalyst exhibits activity for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in alkaline media. Furthermore, a series of alcohols (2-propanol, 2-butanol, 2-pentanol, and cyclohexanol) were electrocatalytically converted to the corresponding ketones with high selectivity, efficienc and durability using the NiSJCFC electrode in alkaline media. In the presence of 0.45 M alcohol, a remarkably decreased overpotential (- 150 mV, vs. RHE) at the NiS2/CFC anode compared with that for water oxidation to generate O2, i.e., the OER, in alkaline media leads to significantly improved H2 generation. For instance, the H2 generation rate in the presence of 0.45 M 2-propanol is almost 1.2-times of that obtained for pure water splitting, but in a system that employs an applied voltage at least 280 mV lower than that required for water splitting to achieve the same current density (20 mA-crn-2). Thus, our results demonstrate the applicability of our bifunctional non-precious-metal electrocatalyst for organic synthesis and simultaneous H2 production.展开更多
Highly uniform and tight adhering of Fe3O4 particles on carbon fiber film(Fe3O4/CFF) is achieved through a simple in-situ thermal oxidation method. Particularly, 3D CFF with interconnected structure can shorten tran...Highly uniform and tight adhering of Fe3O4 particles on carbon fiber film(Fe3O4/CFF) is achieved through a simple in-situ thermal oxidation method. Particularly, 3D CFF with interconnected structure can shorten transfer path and buffer the volume expansion during charge-discharge cycling. Herein, the obtained Fe3O4/CFF anode exhibits a stable cycling performance and excellent high rate capability. The cell delivers a reversible capacity of 1 711 m A·g^(–1) at a current density of 100 m A·g^(–1) after 100 cycles. Even at a high rate density of 2 A·g^(–1), the specific capacity also can maintain 1034 m A·g^(–1) after 100 cycles. The simplified fabrication is featured with low-cost and this binder-free perspective holds great potential in mass-production of high-performance metal oxide electrochemical devices.展开更多
We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161...We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.展开更多
文摘The immobilized photocatalyst, TiO2 film supported on activated carbon fibers (TiO2/ACFs) prepared with molecular adsorption-deposition (MAD), exhibits high stability in cyclic photodegradation runs. The interposition fixing structure between TiO2 film and carbon fiber was investigated by means of SEM-EDX, XRD, XPS and FTIR, and a model was proposed to explain this structure. With SEM examination of carbon fiber surface after removing the deposited TiO2 film, a residual TiO2 super-thin film was found to exist still. By determining surface groups on ACFs, titanium sulfate (Ti2(SO4)3) in burnt remainders of the TiO2/ACFs was thought to be formed with an interfacial reaction between TiO2 film and carbon fibers. These provide some evidence of firm attachment of TiO2 film to carbon fiber surface. In the consideration of characteristics of the MAD, the deposition mechanism of TiO2 film on ACFs was proposed, and the interposition fixing structure was inferred to intercrossedly form between TiO2 film and ACFs’ surface. This structure leaded to firm attachment and high stability of the TiO2 film.
文摘3-methyl-4-nitrophenol (MNP) is the main by-product of the organophosphate insecticide fenitrothion (FT), used in locust control. MNP is highly toxic because it is an endocrine disruptor and then may cause adverse in the biological systems. Then, it is necessary to develop analytical methods for determination of this pollutant in the environment. In this sense, we reported herein the development of an electrochemical sensor for the detection of 3-methyl-4-nitrophenol (MNP), one of the metabolites of fenitrothion (FT), by using naked and modified carbon fiber microelectrode (CFME) by nickel tetrasulfonated phthalocyanine polymer (CFME/p-NiTSPc). The voltammogram showed that MNP presents one irreversible anodic peak corresponding to the oxidation of the phenol group at 0.9 V vs Ag/AgCl. The effect of pH of the buffer on the peak current and SWV parameters such as frequency, scan increment and pulse amplitude were investigated in order to optimize the electrochemical response of the sensor. The obtained results lead to the following optimum value: pH = 6;frequency = 25 Hz, pulse amplitude = 50 mV, scan increment = 10 mV. With these optimum values, the calibration curves show that the peak current varied linearly upon MNP concentration leading to a limit of detection (LoD) for naked CFME close to 3 μg/L whereas for CFME modified by p-NiTSPc, it reaches 0.75 μg/L. This results prove that the presence of p-NiTSPc increasing the sensitivity of the sensor could be used to monitor 3-methyl-4-nitrophenol residue in real matrix.
文摘Electrocatalytic synthesis of value-added chemicals is attracting significant research attention owing to its mild reaction conditions, environmental benignity, and potentially scalable application to organic synthetic chemistry. Herein, we report the preparation of a single-crystalline NiS2 nanostructure film of N 50 nm thickness grown directly on a carbon fiber doth (NiSJCFC) by a facile vapor-phase hydrothermal (VPH) method. NiSJCFC as an electrocatalyst exhibits activity for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in alkaline media. Furthermore, a series of alcohols (2-propanol, 2-butanol, 2-pentanol, and cyclohexanol) were electrocatalytically converted to the corresponding ketones with high selectivity, efficienc and durability using the NiSJCFC electrode in alkaline media. In the presence of 0.45 M alcohol, a remarkably decreased overpotential (- 150 mV, vs. RHE) at the NiS2/CFC anode compared with that for water oxidation to generate O2, i.e., the OER, in alkaline media leads to significantly improved H2 generation. For instance, the H2 generation rate in the presence of 0.45 M 2-propanol is almost 1.2-times of that obtained for pure water splitting, but in a system that employs an applied voltage at least 280 mV lower than that required for water splitting to achieve the same current density (20 mA-crn-2). Thus, our results demonstrate the applicability of our bifunctional non-precious-metal electrocatalyst for organic synthesis and simultaneous H2 production.
基金Supported by the National Natural Science Foundation of China(21471119)
文摘Highly uniform and tight adhering of Fe3O4 particles on carbon fiber film(Fe3O4/CFF) is achieved through a simple in-situ thermal oxidation method. Particularly, 3D CFF with interconnected structure can shorten transfer path and buffer the volume expansion during charge-discharge cycling. Herein, the obtained Fe3O4/CFF anode exhibits a stable cycling performance and excellent high rate capability. The cell delivers a reversible capacity of 1 711 m A·g^(–1) at a current density of 100 m A·g^(–1) after 100 cycles. Even at a high rate density of 2 A·g^(–1), the specific capacity also can maintain 1034 m A·g^(–1) after 100 cycles. The simplified fabrication is featured with low-cost and this binder-free perspective holds great potential in mass-production of high-performance metal oxide electrochemical devices.
基金Japan Science and Technology Agency(JST)Japan Agency for Medical Research and Development(AMED)
文摘We demonstrated stable midinfrared(MIR) optical frequency comb at the 3.0 μm region with difference frequency generation pumped by a high power, Er-doped, ultrashort pulse fiber laser system. A soliton mode-locked161 MHz high repetition rate fiber laser using a single wall carbon nanotube was fabricated. The output pulse was amplified in an Er-doped single mode fiber amplifier, and a 1.1–2.2 μm wideband supercontinuum(SC) with an average power of 205 m W was generated in highly nonlinear fiber. The spectrogram of the generated SC was examined both experimentally and numerically. The generated SC was focused into a nonlinear crystal, and stable generation of MIR comb around the 3 μm wavelength region was realized.