期刊文献+
共找到1,529篇文章
< 1 2 77 >
每页显示 20 50 100
Bond Durability of Carbon-Microfiber-Reinforced Alkali-Activated High-Temperature Cement Adhering to Carbon Steel
1
作者 Toshifumi Sugama Tatiana Pyatina 《Engineering(科研)》 2017年第2期142-170,共29页
The study aims at evaluating the bond durability of a carbon microfiber (CMF)-reinforced alkali-activating calcium aluminate cement (CAC)/fly ash F (FAF) blend cementitious material adhering to carbon steel (CS) under... The study aims at evaluating the bond durability of a carbon microfiber (CMF)-reinforced alkali-activating calcium aluminate cement (CAC)/fly ash F (FAF) blend cementitious material adhering to carbon steel (CS) under stresses induced by a 350℃ heat-25℃ water cooling cycle. This cementitious material/CS joint sample was originally prepared in an autoclave at 300℃ under a pressure of 8.3 MPa. For comparison, two reference geothermal well cements, Class G modified with silica (G) and calciumaluminum phosphate (CaP), were employed as well reinforced with CMF. In the CAC/FAF blending cement systems, the CAC-derived cementitious reaction products preferentially adhered to CS surfaces, rather than that of FAF-related reaction products. CMF played a pivotal role in creating tough interfacial bond structure of cement layer adhering to CS. The bond toughness also was supported by the crystalline cementitious reaction products including sodalite, brownmillerite, and hedenbergite as major phases, and aragonite, boehmite, and garronite as minor ones. The brownmillerite as an interfacial reaction product between cement and CS promoted the chemical bonding of the cement to CS, while the other phases served in providing the attractive bonding of the cement to CS. The post-stress-test joint samples revealed the formation of additional brown-millerite, aragonite, and garronite, in particular brownmillerite as the major one. The combination of chemical bonding and self-advancing adherence behavior of the cement was essential for creating a better interfacial bond structure. A similar interfacial bond structure was observed with CaP. The crystalline phase composition of the autoclaved cement revealed apatite, zeolite, and ferrowyllieite as major reaction products, and aragonite and al-katoite as the minor ones. Ferrowyllieite was identified as cement/CS interfacial reaction product contributing to the chemical bond of cement, while the other phases aided in providing the attractive bond of cement. After a stress test, two phases, ferrowyllieite and aragonite, promoted the self-advancing adherence of cement to CS. However, the effectiveness of these phases in improving adherence performance of cement was less than that of CAC/FAF blend cement, reflecting the fact that the bond durability of CAC/FAF blend cement was far better than that of the CaP. In contrast, the autoclaved silica-modified G cement consisting of xonotlite, and 0.9 nm-to-bermorite and riversideite, with calcite as the crystalline reaction products, had no significant effect on improving the shear bond strength and the bond’s toughness. No interaction product with CS was found in the cement adhering to CS. After a stress test, the calcite phase acted only to promote the self-advancing adherence of cement, but its extent was minimal compared with that of the other cements, thereby resulting in poor bond durability. 展开更多
关键词 carbon MICROFIBERS Calcium ALUMINATE cement FLY Ash Thermal Shock
下载PDF
Artificial intelligence model for studying unconfined compressive performance of fiber-reinforced cemented paste backfill 被引量:8
2
作者 Zhi YU Xiu-zhi SHI +4 位作者 Xin CHEN Jian ZHOU Chong-chong QI Qiu-song CHEN Di-jun RAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期1087-1102,共16页
To reduce the difficulty of obtaining the unconfined compressive strength(UCS) value of fiber-reinforced cemented paste backfill(CPB) and analyze the comprehensive impact of conventional and fiber variables on the com... To reduce the difficulty of obtaining the unconfined compressive strength(UCS) value of fiber-reinforced cemented paste backfill(CPB) and analyze the comprehensive impact of conventional and fiber variables on the compressive property, a new artificial intelligence model was proposed by combining a newly invented meta-heuristics algorithm(salp swarm algorithm, SSA) and extreme learning machine(ELM) technology. Aiming to test the reliability of that model, 720 UCS tests with different cement-to-tailing mass ratio, solid mass concentration, fiber content, fiber length, and curing time were carried out, and a strength evaluation database was collected. The obtained results show that the optimized SSA-ELM model can accurately predict the uniaxial compressive strength of the fiber-reinforced CPB, and the model performance of SSA-ELM model is better than ANN, SVR and ELM models. Variable sensitivity analysis indicates that fiber content and fiber length have a significant effect on the UCS of fiber-reinforced CPB. 展开更多
关键词 fiber-reinforced cemented paste backfill unconfined compressive strength prediction extreme learning machine salp swarm algorithm
下载PDF
A constitutive model for evaluation of mechanical behavior of fiber-reinforced cemented sand 被引量:3
3
作者 Hadi Abioghli Amir Hamidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第2期349-360,共12页
The aim of this study is to present a constitutive model for prediction of the mechanical behavior of fiberreinforced cemented sand. For this purpose, a generalized plasticity constitutive model of sandy soil is selec... The aim of this study is to present a constitutive model for prediction of the mechanical behavior of fiberreinforced cemented sand. For this purpose, a generalized plasticity constitutive model of sandy soil is selected and the parameters of the model are determined for three types of sandy soils using the results of triaxial tests. Next, the proposed model is developed using the existing models based on the physicomechanical characteristics of fiber-reinforced cemented sand. The elastic parameters, flow rule and hardening law of the base model are modified for fiber-reinforced cemented sand. To verify the proposed model, the predicted results are compared with those of triaxial tests performed on fiber-reinforced cemented sand. Finally, the efficiency of the proposed model is studied at different confining pressures, and cement and fiber contents. 展开更多
关键词 fiber-reinforced cementED SAND CONSTITUTIVE model HARDENING law Flow rule
下载PDF
Carbonation of Pure Minerals in Portland Cement:Evolution in Products as a Function of Water-to-solid Ratio
4
作者 XIONG Kun SHANG Xiaopeng +1 位作者 LI Hongyan WANG Dan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1214-1222,共9页
Minerals in Portland cement including tricalcium silicate(C_(3)S),β-dicalcium silicate(β-C_(2)S),tricalcium aluminate(C_(3)A),and tetracalcium ferroaluminate(C_(4)AF),show a significantly different activity and prod... Minerals in Portland cement including tricalcium silicate(C_(3)S),β-dicalcium silicate(β-C_(2)S),tricalcium aluminate(C_(3)A),and tetracalcium ferroaluminate(C_(4)AF),show a significantly different activity and product evolution for CO_(2)curing at various water-to-solid ratios.These pure minerals were synthesized and subject to CO_(2)curing in this study to make an in-depth understanding for the carbonation properties of cement-based materials.Results showed that the optimum water-to-solid ratios of C_(3)S,β-C_(2)S,C_(3)A and C_(4)AF were 0.25,0.15,0.30 and 0.40 for carbonation,corresponding to 2 h carbonation degree of 38.5%,38.5%,24.2%,and 21.9%,respectively.The produced calcite duringβ-C_(2)S carbonation decreased as the water-to-solid ratio increased,with an increase in content of metastable CaCO_(3)of vaterite and aragonite.The thermodynamic stability of CaCO_(3)produced during carbonation was C_(3)A>C_(4)AF>β-C_(2)S>C_(3)S.The carbonation degree of Portland cement was predicted based on the results of pure minerals and the composition of cement,and the error of predicted production of CaCO_(3)was only 1.1%,which provides a potential method to predict carbonation properties of systems with a complex mineral composition. 展开更多
关键词 accelerated carbonation portland cement calcium carbonate water-to-solid ratio
下载PDF
Influence of Low-velocity Impact on Damage Behavior of Carbon Fiber-reinforced Composites 被引量:3
5
作者 ZHANG Xiaoyu ZHOU Ruoyu +2 位作者 CHEN Jianzhong LV Yong CAO Dongfeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第3期482-487,共6页
A combination of experimental measurements and numerical analysis was utilized to study the low-velocity impact damage of domestic carbon fiber-reinforced composites(CFRCs).The results indicated that the low-velocity ... A combination of experimental measurements and numerical analysis was utilized to study the low-velocity impact damage of domestic carbon fiber-reinforced composites(CFRCs).The results indicated that the low-velocity impact damage induced pits and longitudinal cracks on the front side,oblique cracks and delaminationin on the back side.The pit depth increased with the increasing impact energy.It was demonstrated that the numerical analysis strain history curve was similar to the experimentally measured strain history curve,which verified the accuracy of numerical analysis in which the Hashin failure criterion was used.The work provides basic data and theoretical basis for the promotion and application of the domestic carbon fiber,and demonstrates the feasibility of replacing imported carbon fibers with domestic carbon fibers. 展开更多
关键词 domestic carbon fiber-reinforced composites low-velocity impact Hashin failure criterion damage mode strain history curve
下载PDF
Experimental study of polyurea-coated fiber-reinforced cement boards under gas explosions 被引量:1
6
作者 Meng Gu Xiao-dong Ling +3 位作者 An-feng Yu Guo-xin Chen Hao-zhe Wang Han-xiang Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期201-213,共13页
Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea w... Five types of polyurea elastomers were synthesized by changing the isocyanate component and the mechanical properties of polyurea materials were measured. Fiber-reinforced cement boards(FRCB)strengthened by polyurea with different formulations were processed, and a series of experiments were carried out on the specimens with gas explosion devices. The results showed that the conventional mechanical properties of different types of polyureas had their own advantages. Based on the gas explosion overpressure criterion, the blast resistances of reinforced plates were quantitatively evaluated,and the best polyurea was selected to guide the formulation design. The three typical failure modes of polyurea-reinforced FRCBs were flexural, shear, and flexural-shear failure. Dynamic thermodynamics and shock wave spectral analysis revealed that the polyurea did not undergo a glass transition in the gas explosion tests but retained its elastic properties, allowing it to effectively wrap the fragments formed by the brittle substrates. 展开更多
关键词 POLYUREA fiber-reinforced cement board Gas explosion Failure criterion Glass transition
下载PDF
Efficient stabilization of dredged sludge with high water content using an improved bio-carbonation of reactive magnesia cement method
7
作者 Rui Wang Chaosheng Tang +4 位作者 Xiaohua Pan Dianlong Wang Zhihao Dong Xiying Zhang Xiancai Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3760-3771,共12页
This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-dra... This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge. 展开更多
关键词 Reactive magnesia cement(RMC)biocarbonation Urea pre-hydrolysis Dredged sludge Efficient stabilization Unconfined compressive strength Microbially induced carbonate precipitation(MICP)
下载PDF
Research Analysis on the Microscopic Properties and Damping Performance of Carbon Nanomaterial-Modified Cement Mortar
8
作者 Bin Liu Norhaiza Nordin +2 位作者 Jiyang Wang Jingwei Wu Xiuliang Liu 《Engineering(科研)》 2024年第9期275-283,共9页
The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive p... The application of carbon nanomaterials, particularly graphene and carbon nanotubes, in cement-based composites is highly significant. These materials demonstrate the multifunctionality of carbon and offer extensive possibilities for technological advancements. This research analyzes how the integration of graphene into cement-based composites enhances damping and mechanical properties, thereby contributing to the safety and durability of structures. Research on carbon nanomaterials is ongoing and is expected to continue driving innovation across various industrial sectors, promoting the sustainable development of building materials. 展开更多
关键词 carbon Nanomaterials cement-Based Composites Microscopic Properties Damping Properties Modified cement Mortar
下载PDF
Properties and Characterization of Two Clays Raw Material from Mountain District (West of Côte d’Ivoire) for Use in Low-Carbon Cements
9
作者 Wedjers Max Robin Manouan Bi Irié Hervé Gouré Doubi +3 位作者 Lébé Prisca Marie-Sandrine Kouakou Atta Kouamé Brice Koffi Alfred Niamien Kouamé Namory Méité 《Advances in Materials Physics and Chemistry》 CAS 2024年第8期137-145,共9页
This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the exper... This work was devoted to the study of the physico-chemical properties of two clay minerals from the Mountain District (West Côte d'Ivoire) referenced ME1 and ME2. These samples were characterized by the experimental techniques, such as X-ray diffraction (XRD), Infrared spectroscopy (IR), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Differential Thermal Analysis and Thermogravimetry (DTA-TG), Brunauer, Emett and Teller method (BET), laser particle size analysis and Scanning Electron Microscope (SEM). The main results of these analyses reveal that the two clay samples mainly contain quartz (52.91% for ME1 and 51.72% for ME2), kaolinite (36.60% for ME1 and 41.6% for ME2) and associated phases, namely goethite and hematite (13.47% for ME1 and 11.00% for ME2). The specific surface values obtained for samples ME1 and ME2 are 34.78 m2/g and 29.18 m2/g respectively. The results obtained show that the samples studied belong to the kaolinite family. After calcination, they could have good pozzolanic activity and therefore be used in the manufacture of low-carbon cements. 展开更多
关键词 QUARTZ KAOLINITE Mountain District Low-carbon cements
下载PDF
The Influence of Carbon Nanotubes and Nano-Silica Fume on Enhancing the Damping and Mechanical Properties of Cement-Based Materials
10
作者 Bin Liu Norhaiza Nordin +2 位作者 Jiyang Wang Jingwei Wu Xiuliang Liu 《Materials Sciences and Applications》 2024年第9期399-416,共18页
This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical propertie... This paper conducted experimental studies on the damping and mechanical properties of carbon nanotube-nanosilica-cement composite materials with different carbon nanotube contents. The damping and mechanical properties enhancement mechanisms were analyzed and compared through the porosity structure test, XRD analysis, and scanning electron microscope observation. The results show that the introduction of nanosilica significantly improves the dispersion of carbon nanotubes in the cement matrix. At the same time, the addition of nanosilica not only effectively reduces the critical pore size and average pore size of the cement composite material, but also exhibits good synergistic effects with carbon nanotubes, which can significantly optimize the pore structure. Finally, a rationalization suggestion for the co-doping of nanosilica and carbon nanotubes was given to achieve a significant increase in the flexural strength, compressive strength and loss factor of cement-based materials. 展开更多
关键词 cement-based Composites carbon Nanotubes Nano Silica Fume Damping Property Mechanical Property
下载PDF
Mechanical and Morphological Properties of Highly Dispersed Carbon Nanotubes Reinforced Cement Based Materials 被引量:13
11
作者 王宝民 HAN Yu +1 位作者 PAN Baofeng ZHANG Tingting 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期82-87,共6页
Stable homogeneous suspensions of multi-walled carbon nanotubes (MWCNTs) were prepared using gum arabic (GA) as dispersant and were incorporated to Portland cement paste. The dispersion was examined by ultraviolet... Stable homogeneous suspensions of multi-walled carbon nanotubes (MWCNTs) were prepared using gum arabic (GA) as dispersant and were incorporated to Portland cement paste. The dispersion was examined by ultraviolet visible spectroscopy (UV-vis), and the concentration measurement shows that the optimum concentration of GA is 0.45 g · L^-1. The dispersibility of the surface-modified MWCNTs in aqueous solution and cement matrix were investigated by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), and the mechanical properties of the composites were investigated. The results show that the addition of the treated nanotubes can improve both the flexural strength and the compressive strength of the Portland cement composite significantly. The flexural strength of the composite increases up to 43.38% with the MWCNT concentration of 0.08% (by weight of cement). The porosity and pore size distribution of the composites were measured by mercury intrusion porosimetry (MIP), and the results indicate that the cement paste doped with MWCNTs obtained lower porosity and concentrated pore size distribution. The morphological structure was analyzed by field emission scanning electron microscopy (FESEM) and EDS. It is shown that MWCNTs act as bridges and networks across cracks and voids, which transfer the load in case of tension, and the interface bond strength between the nanotubes and matrix is very strong. 展开更多
关键词 carbon nanotubes Portland cement DISPERSIBILITY REINFORcement morphological properties
下载PDF
Mechanism of Functional Responses to Loading of Carbon Fiber Reinforced Cement-based Composites 被引量:6
12
作者 JIANG Cuixiang LI Zhuoqiu +1 位作者 SONG Xianhui LU Yong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第4期571-573,共3页
Single fiber pull-out testing was conducted to study the origin of the functional responses to loading of carbon fiber reinforced cement-based composites. The variation of electrical resistance with the bonding force ... Single fiber pull-out testing was conducted to study the origin of the functional responses to loading of carbon fiber reinforced cement-based composites. The variation of electrical resistance with the bonding force on the fiber-matrix interface was measured. Single fiber electromechanical testing was also conducted by measuring the electrical resistance under static tension. Comparison of the results shows that the resistance increasing during single fiber pull-out is mainly due to the changes at the interface. The conduction mechanism of the composite can be explained by the tunneling model. The interfacial stress causes the deformation of interfacial structure and the interfacial debonding, which have influences on the tunneling effect and result in the change of resistance. 展开更多
关键词 carbon fiber functional response tunneling effect single pull-out cement
下载PDF
Effects of Carbon Nanotubes on Mechanical and 2D-3D Microstructure Properties of Cement Mortar 被引量:6
13
作者 刘巧玲 SUN Wei +1 位作者 JIANG Hao WANG Caihui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第3期513-517,共5页
To study the influence of multi-wall carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of cementitious composites, 0.00, 0.02, 0.08, 0.10, and 0.20 wt% of multi-wall carbon nanotubes were ad... To study the influence of multi-wall carbon nanotubes (MWCNTs) on the mechanical and microstructural properties of cementitious composites, 0.00, 0.02, 0.08, 0.10, and 0.20 wt% of multi-wall carbon nanotubes were added into cement mortar, in which the cement-sand ratio was 1:1.5. The flexural and compressive strengths of cement mortar at the age of 3, 7, 28 and 90 d and the fracture performance at the age of 28 d were determined, its 2D micrograph was tested by means of SEM, and the 3D defects distribution was firstly determined with or without CNTs by means of XCT (X-ray computerized tomography). The results showed that 0.08 wt% of CNTs improved the compressive strength and flexural strength by 18% and 19~A, respectively, and a significant improvement of its fracture property was observed. Moreover lower addition of carbon nanotubes to cement mortars can improve its microstructure and decrease the defects significantly compared to the cement mortar without CNTs. With the increase of the content of CNTs, the mechanical properties of cement mortars presented to be declined largely due to the agglomeration of CNTs. 展开更多
关键词 carbon nanotubes cement mortar mechanical properties AGGLOMERATION microstmcture XCT (X-ray computerized tomography)
下载PDF
Early Carbonation Behavior of High-volume Dolomite Powder-cement Based Materials 被引量:4
14
作者 杨华美 何真 SHAO Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期541-549,共9页
Combined with DTG analysis, X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM) affiliated with energy dispersive spectrometer analysis (EDS), the early hydration and... Combined with DTG analysis, X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM) affiliated with energy dispersive spectrometer analysis (EDS), the early hydration and carbonation behavior of cement paste compacts incorporated with 30% of dolomite powder at low water to cement ratio (0.15) was investigated. The results showed that early carbonation curing was capable of developing rapid early strength. It is noted that the carbonation duration should be strictly controlled otherwise subsequent hydration might be hindered. Dolomite powder acted as nuclei of crystallization, resulting in acceleration of products formation and refinement of products crystal size. Therefore, as for cement-based material, it was found that early carbonation could reduce cement dosages to a large extent and promote rapid strength gain resulting from rapid formation of products, supplemental enhancement due to water release in the reaction of carbonation, and formation ofnanometer CaCO3 skeleton network at early age. 展开更多
关键词 dolomite powder cement based material early carbonation mechanism MICROSTRUCTURE
下载PDF
Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete 被引量:4
15
作者 张德成 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期663-666,共4页
The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete (HPC) were investigated. The experimental results show that with the decreasing... The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete (HPC) were investigated. The experimental results show that with the decreasing water/cement ratio, the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably, and the carbonation resistance capability is also improved with the adding admixtures. The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD. The analysis results reveal that the main hydration product of sulphoaluminate cement, that is ettringite (AFt), decomposes after carbonation. 展开更多
关键词 sulphoaluminate cement carbonATION high performance concrete (HPC) ADMIXTURE ETTRINGITE
下载PDF
Fiber-reinforced Mechanism and Mechanical Performance of Composite Fibers Reinforced Concrete 被引量:4
16
作者 申俊敏 ZHANG Yancong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期121-130,共10页
To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evalua... To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties. 展开更多
关键词 cement CONCRETE composite fibers mechanical performance fiber-reinforced mechanism
下载PDF
Effect of chemical vapor infiltration treatment on the wave-absorbing performance of carbon fiber/cement composites 被引量:4
17
作者 Kezhi Li Chuang Wang Hejun Li Lingjun Guo Jihua Lu 《Journal of University of Science and Technology Beijing》 CSCD 2008年第6期808-815,共8页
Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology. A thinner layer ofpyrocarbon was deposited on the fiber surface. The dispersion of carbon fibers in a... Short carbon fibers were treated at high temperatures around 1100℃ through chemical vapor infiltration technology. A thinner layer ofpyrocarbon was deposited on the fiber surface. The dispersion of carbon fibers in a cement matrix and the mechanical properties of carbon fiber/cement composites were investigated by scanning electron microscopy (SEM) and other tests. The reflec- tivity of electromagnetic waves by the composites was measured in the frequency range of 8.0-18 GHz for different carbon fiber contents of 0.2wt%, 0.4wt%, 0.6wt%, and 1.0wt%. The results show that the reflectivity tends to increase with the increase of fiber content above 0.4wt%. The minimum reflectivity is -19.3 dB and the composites exhibit wave-absorbing performances. After pyrocarbon is deposited on the fiber, all the refiectivity data are far greater. They are all above -10 dB and display mainly wave-reflecting performances. 展开更多
关键词 carbon fibers chemical vapor infiltration cement REFLECTIVITY wave-absorbing property
下载PDF
Carbonation of Sulphoaluminate Cement with Layered Double Hydroxides 被引量:3
18
作者 耿海宁 DUAN Ping +1 位作者 CHEN Wei 水中和 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第1期97-101,共5页
The increasing importance of the ecologically minded production of building materials makes it necessary to develop reasonable alternatives to the CO2-intense production of ordinary Portland cement (OPC). The develo... The increasing importance of the ecologically minded production of building materials makes it necessary to develop reasonable alternatives to the CO2-intense production of ordinary Portland cement (OPC). The development of new or modified concrete is an important part of existing strategies to improve performance and minimize life-cycle costs. Therefore, we investigated carbonation resistance properties of sulphoaluminate cement (SAC) concrete incorporating layered double hydroxides (LDHs). X-ray diffraction (XRD) and IR-spectroscopy were employed to characterize the component and structural changes of LDHs and cement paste before and after carbonation test. Carbonation resistance of concrete was experimentally evaluated. Finally, carbonation of Portland cement and SAC concrete was compared. The experimental results show that carbonation depth decreases remarkably with the addition of LDHs, especially the calcinated LDHs. Carbonation depth of SAC concrete is smaller than that of PC concrete regardless of curing time. 展开更多
关键词 sulphoaluminate cement carbonATION layered double hydroxides
下载PDF
Application of X-ray Computed Tomography in Characterization Microstructure Changes of Cement Pastes in Carbonation Process 被引量:2
19
作者 韩建德 孙伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期358-363,共6页
The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three type... The microstructure characteristics and meso-defect volume changes of hardened cement paste before and after carbonation were investigated by three-dimensional (3D) X-ray computed tomograpby (XCT), where three types water-to-cement ratio of 0.53, 0.35 and 0.23 were considered. The high-resolution 3D images of microstructure and filtered defects were reconstructed by an XCT VG Studio MAX 2.0 software, The meso- defect volume fractions and size distribution were analyzed based on 3D images through add-on modules of 3D defect analysis. The 3D meso-defects volume fractions before carbonation were 0.79%, 0.38% and 0.05% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The 3D meso-defects volume fractions after carbonation were 2.44%, 0.91% and 0.14% corresponding to w/c ratio=0.53, 0.35 and 0.23, respectively. The experimental results suggest that 3D meso-defects volume fractions after carbonation for above three w/c ratio increased significantly. At the same time, meso-cracks distribution of the carbonation shrinkage and gray values changes of the different w/c ratio and carbonation reactions were also investigated. 展开更多
关键词 X-ray CT cement paste carbonATION microstructure changes 3D meso-defect analysis
下载PDF
ELECTRO-THERMAL EFFECTS AND DEFORMATION RESPONSE OF CARBON FIBER MAT CEMENT BEAMS 被引量:2
20
作者 Zhu Sirong Li Zhuoqiu Song Xianhui (Department of Engineering Structures and Mechanics,Wuhan University of Technology,Wuhan 430070,China) 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第4期359-365,共7页
A carbon fiber mat is a sheet composed of intercrossing short carbon fibers,which has more stable and lower electrical resistivity compared with dispersed short carbon fiber mixed in cement.Thereby carbon fiber mat ce... A carbon fiber mat is a sheet composed of intercrossing short carbon fibers,which has more stable and lower electrical resistivity compared with dispersed short carbon fiber mixed in cement.Thereby carbon fiber mat cement could exhibit obvious electro-thermal effect.When electrified,the temperature of composite structures made up of cement mortar and carbon fiber mat will rise rapidly.If the temperature field is not uniform,temperature difference will cause structures to deform,which can be used to adjust the deformation of structures.The temperature field and deformation response driven by the electro-thermal effects of a type of carbon fiber mat cement beams are studied.Firstly,the temperature and deformation responses are studied using theories of thermal conduction and elasticity.Secondly,experimental results are given to verify the theoretical solution.These two parts lay the foundation for temperature and deformation adjustment. 展开更多
关键词 carbon fiber mat cement electro-thermal effect deformation response
下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部