期刊文献+
共找到3,199篇文章
< 1 2 160 >
每页显示 20 50 100
Preparation and Analysis of Carbon Fiber-Silicon Carbide Thermally Conductive Asphalt Concrete
1
作者 Zhiyong Yang Enjie Hu +3 位作者 Lei Xi Zhi Chen Feng Xiong Chuanhai Zhan 《Fluid Dynamics & Materials Processing》 EI 2024年第4期705-723,共19页
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min... An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass. 展开更多
关键词 carbon fiber silicon carbide thermally conductive asphalt concrete road performance electrothermal snow melting
下载PDF
Efficient Design of Low Carbon,Low Strength Concrete:Industry Perspective
2
作者 Mehrdad Ameri Vamkani Mohammadreza Moghbel Esfahani 《Journal of Civil Engineering and Architecture》 2024年第10期485-503,共19页
LSC(low-strength concrete),which is the majority of everyday concrete used,is relatively inefficient in terms of carbon emissions.Research has shown that evaluating the concrete mix design,reducing the amount of cemen... LSC(low-strength concrete),which is the majority of everyday concrete used,is relatively inefficient in terms of carbon emissions.Research has shown that evaluating the concrete mix design,reducing the amount of cement used,and replacing it with SCMs(supplementary cementitious materials)are more effective than adding superplasticisers and chemical additions.The current research has dealt with the design of LSC by a review method.According to the literature review on the concrete mix and its carbon emissions,113 mix designs with different properties and applications were collected from real industry data,and several data analysis techniques were used to analyse their performance.Examining the data showed that,in general,the use of LSC is inefficient compared to HSC(high-strength concrete).However,several strategies were found that can solve this inefficiency.The results show that the additive cement materials in the binary/ternary combination have a critical effect on reducing the embodied carbon of the composite.Accordingly,it is recommended that the construction industry use the composition of cementitious materials as a key factor in the design of their concretes.The need for more research is felt to identify and critically evaluate other factors that can improve the performance of these concretes. 展开更多
关键词 Cementitious additives embodied carbon carbon emissions concrete composition LSC
下载PDF
Investigation of Carbonation of Concrete Based on Crushed Sand and Admixtures
3
作者 Jacques Herve Koung à Bediang Emmanuel Elat Assoua Moukete +1 位作者 Paul Djomou Djonga Michel Mbessa 《Journal of Minerals and Materials Characterization and Engineering》 2024年第5期247-264,共18页
Carbonation is a natural aging process that occurs in all types of concrete. One of its primary implications is the acceleration of steel corrosion caused by the phenomena of depassivation. The goal of this research i... Carbonation is a natural aging process that occurs in all types of concrete. One of its primary implications is the acceleration of steel corrosion caused by the phenomena of depassivation. The goal of this research is to investigate the carbonation of quarry sand-based concrete. The concrete is made of 100% crushed sand 0/6.3, gravel 8/15, and 15/25 from the Arab Contractor quarry in Nomayos, Cameroon, with CEM II B-P 42.5 R from CIMENCAM (Cimenteries du Cameroun). The study employed two admixtures: one with a dual superplasticizing and reducing action (Sikamen) and another with a water-repellent effect (Sika liquid). Carbonation was performed on concrete samples at the following dates: 0, 7, 14, 28, 56, 90, 180 days, one year, and six months. Carbonated concrete (CC) and non-carbonated concrete (NCC) samples are compared in terms of their physical attributes and mineralogical characteristics. The results of this investigation reveal that after more than a year and six months of carbonation, porosity decreases and permeability increases. Despite the high fineness modulus of quarry sand, the compressive strength of quarry sand-based concrete is satisfactory. Carbonation depth is relatively high on some dates, exceeding the minimal cover value for concrete reinforcement. Sikament additive increases concrete compactness and durability while decreasing permeability. Sika water repellant mixes with the lime in cement to generate complimentary crystallizations that block the mortar’s capillaries, making it watertight. 展开更多
关键词 carbonATION concrete Crushed Sand Sikamant WATER-REPELLENT
下载PDF
Carbon-Coated-Nylon-Fiber-Reinforced Cement Composites as an Intrinsically Smart Concrete for Damage Assessment during Dynamic Loading
4
作者 ZhenjunZHOU ZhiguoXIAO +3 位作者 WeiPAN ZhipengXIE XixianLUO LeiJIN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期583-586,共4页
Concrete containing short carbon-coated-nylon fibers (0.4-2.0 vol. pct) exhibited quasi-ductile response by developing a large damage zone prior to fracture localization. In the damage zone, the material was microcrac... Concrete containing short carbon-coated-nylon fibers (0.4-2.0 vol. pct) exhibited quasi-ductile response by developing a large damage zone prior to fracture localization. In the damage zone, the material was microcracked but continued to local strain-harden. The carbon-coated-nylon-fiber-reinforced concrete composites (NFRC) were found to be an intrinsically smart concrete that could sense elastic and inelastic deformation, as well as fracture. The fibers served to bridge the cracks and the carbon coating gave the conduction path. The signal provided came from the change in electrical resistance, which was reversible for elastic deformation and irreversible for inelastic deformation and fracture. The resistance decrease was due to the reduction of surface touch resistance between fiber and matrix and the crack closure. The resistance irreversible increase resulted from the crack opening and breakage of the carbon coating on nylon fiber. 展开更多
关键词 concrete Nylon fiber carbon coating SMART
下载PDF
Influence of Recycled Concrete Fine Powder on Durability of Cement Mortar
5
作者 Yadong Bian Xuan Qiu +2 位作者 Jihui Zhao Zhong Li Jiana Ouyang 《Fluid Dynamics & Materials Processing》 EI 2024年第1期45-58,共14页
In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero... In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar. 展开更多
关键词 Recycled concrete fine powder cement mortar carbonIZATION SULFATE chloride ion DURABILITY
下载PDF
Quality Improvement of Recycled Concrete Aggregate by Accelerated Carbonation under Different Pressure
6
作者 丁亚红 武军 +3 位作者 ZHANG Xianggang XU Ping NING Wei LI Yajing 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第3期623-631,共9页
Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated car... Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation. 展开更多
关键词 recycled concrete aggregate treatment method accelerated carbonation interfacial transition zone saturated lime water CALCITE
下载PDF
Fiber-reinforced Mechanism and Mechanical Performance of Composite Fibers Reinforced Concrete 被引量:4
7
作者 申俊敏 ZHANG Yancong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期121-130,共10页
To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evalua... To understand the enhancing effect and fiber-reinforced mechanism of composite fibers reinforced cement concrete, the influences of composite fibers on micro-cracks and the distribution of composite fibers were evaluated by optical electron micrometer(OEM) and scanning electron microscope(SEM). Three kinds of fiber, such as polyacrylonitrile-based carbon fiber, basalt fiber, and glass fiber, were used in the composite fibers reinforced cement concrete. The composite fibers could form a stable structure in concrete after the liquid-phase coupling treatment, gas-liquid double-effect treatment, and inert atmosphere drying. The mechanical properties of composite fibers reinforced concrete(CFRC) were studied by universal test machine(UTM). Moreover, the effect of composite fibers on concrete was analyzed based on the toughness index and residual strength index. The results demonstrated that the composite fibers could improve the mechanical properties of concrete, while the excessive amount of composite fibers had an adverse effect on the mechanical properties of concrete. The composite fibers could significantly improve the toughness index of CFRC, and the increment rate is more than 30%. The composite fibers could form a mesh structure, which could promote the stability of concrete and guarantee the excellent mechanical properties. 展开更多
关键词 CEMENT concrete composite fibers mechanical performance fiber-reinforced mechanism
下载PDF
Peridynamic Modeling and Simulation of Fracture Process in Fiber-Reinforced Concrete 被引量:5
8
作者 Zhuang Chen Xihua Chu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期241-272,共32页
In this study,a peridynamic fiber-reinforced concrete model is developed based on the bond-based peridynamic model with rotation effect(BBPDR).The fibers are modelled by a semi-discrete method and distributed with ran... In this study,a peridynamic fiber-reinforced concrete model is developed based on the bond-based peridynamic model with rotation effect(BBPDR).The fibers are modelled by a semi-discrete method and distributed with random locations and angles in the concrete specimen,since the fiber content is low,and its scale is smaller than the concrete matrix.The interactions between fibers and concrete matrix are investigated by the improvement of the bond’s strength and stiffness.Also,the frictional effect between the fibers and the concrete matrix is considered,which is divided into static friction and slip friction.To validate the proposed model,several examples are simulated,including the tensile test and the three-point bending beam test.And the numerical results of the proposed model are compared with the experiments and other numerical models.The comparisons show that the proposed model is capable of simulating the fracture behavior of the fiber-reinforced concrete.After adding the fibers,the tensile strength,bending strength,and toughness of the fiber-reinforced concrete specimens are improved.Besides,the fibers distribution has an impact on the crack path,especially in the three-point bending beam test. 展开更多
关键词 PERIDYNAMICS fiber-reinforced concrete fracture mechanics numerical simulation three-point bending beam
下载PDF
Anti-cracking Property of EVA-modified Polypropylene Fiber-reinforced Concrete Under Thermal-cooling Cycling Curing 被引量:2
9
作者 LIU Sifeng YANG Siyu +2 位作者 KONG Yaning WAN Tingting ZHAO Guorong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第5期1109-1118,共10页
In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive ... In order to investigate the synergistic effect of re-dispersible powder-ethylene-vinyl acetate copolymer(EVA) and polypropylene fiber on the crack resistance of concrete under thermal fatigue loading, the compressive strength, ultimate tensile strength, ultimate tensile strain and tensile modulus of elasticity were tested. In addition, ultrasonic method and scanning electron microscope analysis were used to explain the microstructure mechanism. The results show that polypropylene fiberreinforced concrete presents a better performance on crack resistance than ordinary concrete, and the synergism of EVA and polypropylene fiber can improve the anti-cracking ability of concrete further. 展开更多
关键词 anti-cracking property EVA-modified POLYPROPYLENE fiber-reinforced concrete thermal-cooling CYCLING CURING
下载PDF
Compressive Strength Estimation for the Fiber-Reinforced Polymer (FRP)-Confined Concrete Columns with Different Shapes Using Artificial Neural Networks 被引量:3
10
作者 曹玉贵 李小青 胡隽 《Journal of Donghua University(English Edition)》 EI CAS 2015年第3期395-400,共6页
An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural ... An evaluation of existing strength of concrete columns confined with fiber-reinforced polymer( FRP) was presented with extensive collection of experimental data. According to the evaluation results, artificial neural networks( ANNs) model to predict the ultimate strength of FRP confined column with different shapes was proposed. The models had seven inputs including the column length,the tensile strength of the FRP in the hoop direction,the total thickness of FRP,the diameter of the concrete specimen,the elastic modulus of FRP,the corner radius and the concrete compressive strength. The compressive strength of the confined concrete was the output data. The results reveal that the proposed models have good prediction and generalization capacity with acceptable errors. 展开更多
关键词 compressive strength concrete column artificial neural networks(ANN) fiber-reinforced polymer(FRP)
下载PDF
Damage Self-diagnoses Feasibility of Fiber-reinforced Concrete Structure
11
作者 王春阳 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期319-322,共4页
The seepage theory was used to explain the variation between the specific resistance of the carbon fiber reinforced cement concrete and the carbon fiber volume ratio. The electro-dynamic seepage was observed in the ce... The seepage theory was used to explain the variation between the specific resistance of the carbon fiber reinforced cement concrete and the carbon fiber volume ratio. The electro-dynamic seepage was observed in the cement. The longer the carbon fiber is, the smaller the critical volume to produce the electro-dynamic seepage phenomenon will be. However, the forming and stirring process is harder. In general, the average length of carbon fiber is 5 mm. Under the condition of three-point bending load, the specific resistance changes with the loading process, and a good correlation could be obtained according to the load-deflection relationship. The experimental results reveal that the carbon fiber reinforced cement based composites can be used as sensors to self-diagnoses of the damage. 展开更多
关键词 electrical conductivity carbon fiber concrete
下载PDF
Study on High Strength Concrete Confined by Continuous Carbon Fiber Sheet 被引量:2
12
作者 赵彤 谢剑 +1 位作者 刘明国 河村博之 《Transactions of Tianjin University》 EI CAS 2002年第1期12-15,共4页
Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined ... Eight high strength concrete (HSC) prisms strengthened with continuous carbon fiber sheet(CFS)were tested.As a result of the confinement provided by CFS,the concrete would fail at a greater strain than the unconfined and then a significant increase in ductility can be achieved.The lateral pressure exerted by CFS would increase the compressive strength of the concrete,resulting in higher load bearing capacity.This paper proposes the stress strain curve of this kind of hybrid specimen,which agrees well with the test results.Based on the stress strain relationship and the assumptions proposed in this paper,a computer program was developed to analyze HSC columns,confined by CFS,which were subjected to axial compression and biaxial bending.The results shown in this paper indicate that the ductility of HSC column is significantly improved and the strength is also increased by some degree. 展开更多
关键词 high strength concrete carbon fiber sheet STRENGTH DEFORMATION
下载PDF
Self-monitoring Application of Asphalt Concrete Containing Graphite and Carbon Fibers 被引量:5
13
作者 LIU Xiaoming WU Shaopeng +1 位作者 LI Ning GAO Bo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第2期268-271,共4页
The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-bas... The self-monitoring application of asphalt concrete containing graphite and carbon fibers using indirect tensile test and wheel rolling test were introduced. The experiment results indicate that this kind of pitch-based composite is effective for strain/stress self-monitoring. In the indirect tensile test, for a completely conductive asphalt concrete specimen, the piezoresistivity was very weak and slightly positive, which meant the resistivity increase with the increment of tensile strain at all stress/strain amplitudes, with the gage factor as high as 6. The strain self-sensing ability was superior in the case of higher graphite content. However, when the conductive concrete was embedded into common asphalt concrete specimen as a partial structure function, the piezoresistivity was positive at all stress/strain amplitudes and with the gage factor of 13, which was much higher than that of completely conductive specimen. Thus, the strain self-sensing ability was superior when conductive asphalt concrete was taken in as a partial structure function. In the wheel-rolling test, the piezoresistivity was highly positive. At any stress amplitude, the piezoresistivity was strong, with the gage factor as high as 100, which was higher for a stress amplitude of 0.7 MPa than that of 0.5 MPa. 展开更多
关键词 asphalt concrete GRAPHITE carbon fibers SELF-MONITORING PIEZORESISTIVITY
下载PDF
Electrical Conductivity of the Carbon Fiber Conductive Concrete 被引量:5
14
作者 侯作富 李卓球 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第2期346-349,共4页
This paper discussed two methods to enhance the electrical conductivity of the carbon fiber(CF) electrically conductive concrete. The increase in the content of stone and the amount of water used to dissolve the met... This paper discussed two methods to enhance the electrical conductivity of the carbon fiber(CF) electrically conductive concrete. The increase in the content of stone and the amount of water used to dissolve the methylcellulose and marinate the carbon fibers can decrease the electrical resistivity of the electrically conductive concrete effectively. Based on these two methods, the minimum CF content of the CF electrically conductive concrete for deicing or snow-melting application and the optimal ratio of the amount of water to dissolve the methylcellulose and marinate the carbon fibers were obtained. 展开更多
关键词 carbon fiber electrical resistivity conductive concrete
下载PDF
Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete 被引量:4
15
作者 张德成 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期663-666,共4页
The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete (HPC) were investigated. The experimental results show that with the decreasing... The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete (HPC) were investigated. The experimental results show that with the decreasing water/cement ratio, the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably, and the carbonation resistance capability is also improved with the adding admixtures. The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD. The analysis results reveal that the main hydration product of sulphoaluminate cement, that is ettringite (AFt), decomposes after carbonation. 展开更多
关键词 sulphoaluminate cement carbonATION high performance concrete (HPC) ADMIXTURE ETTRINGITE
下载PDF
Distribution of Calcium Carbonate in the Process of Concrete Self-healing 被引量:3
16
作者 钱春香 LI Ruiyang +1 位作者 LUO Mian CHEN Huaicheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期557-562,共6页
The complete deposition distribution process of calcium carbonate is summarized in three directions of cracks. Distribution of calcium carbonate in the self-healing process of microbial concrete is studied in detail, ... The complete deposition distribution process of calcium carbonate is summarized in three directions of cracks. Distribution of calcium carbonate in the self-healing process of microbial concrete is studied in detail, with the help of a variety of analytical techniques. The results show that carbonate deposits along the x-axis direction of the cracks. The farther from the crack surfaces of concrete matrix in x-axis direction, the more the content of the substrate, the less content of calcium carbonate. Gradual accumulation of calcium carbonate along the y-axis direction is like building a house with bricks. Different repair points are gradually connected, and ultimately the whole of cracks are completely filled. In the z-axis direction, calcium deposits on the surface of fracture direction, when the crack is filled on the surface, because the internal crack hypoxia in the depths of cracks hardly produces calcium carbonate. 展开更多
关键词 microbial concrete cracks SELF-HEALING calcium carbonate DEPOSITION
下载PDF
Experimental Study on Deicing Performance of Carbon Fiber Reinforced Conductive Concrete 被引量:3
17
作者 ZuquanTANG ZhuoqiuLI +1 位作者 JueshiQIAN KejinWANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第1期113-117,共5页
Carbon fiber reinforced concrete (CFRC) is a kind of good electrothermal material. When connected to an external power supply, stable and uniform heat suitable for deicing application is generated in the CFRC slab. El... Carbon fiber reinforced concrete (CFRC) is a kind of good electrothermal material. When connected to an external power supply, stable and uniform heat suitable for deicing application is generated in the CFRC slab. Electric heating and deicing experiments of carbon fiber reinforced concrete slab were carried out in laboratory, and the effect of the temperature and thickness of ice, the thermal conductivity of CFRC, and power output on deicing performance and energy consumption were investigated. The experimental results indicate that it is an effective method to utilize the thermal energy produced by CFRC slab to deice. The time to melt the ice completely decreases with increasing power output and ice temperature, and increases with increasing thickness of the ice. The energy consumption to melt 2 mm thickness of ice varies approximately linearly from 0.556 to 0.846 kW·h/m2 as the initial temperature ranges from -3℃ to - 18℃. CFRC with good thermal conduction can reduce temperature difference in CFRC slab effectively. 展开更多
关键词 Electrically conductive concrete carbon fiber Energy consumption Electrothermal effect DEICING
下载PDF
Characteristics of Soybean Urease Mineralized Calcium Carbonate and Repair of Concrete Surface Damage 被引量:4
18
作者 FAN Yanan DU Hongxiu WEI Hong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第1期70-76,共7页
The C60 concrete blocks with surface crack damage under high temperature environment were soaked by adding appropriate amount of soybean urease into the CO(NH_(2))_(2)-CaCl_(2) solution,the soybean urease mineralized ... The C60 concrete blocks with surface crack damage under high temperature environment were soaked by adding appropriate amount of soybean urease into the CO(NH_(2))_(2)-CaCl_(2) solution,the soybean urease mineralized calcium carbonate were characterized,and the effect of repairing concrete surface crack damage were evaluated by the surface sedimentation of C60 concrete blocks in the study.The experimental results showed that the activity of soybean powder was statistically significant,and its productivity of urease was comparable with that of urease-producing bacteria.After immersion in a soybean solution,a layer of complete and continuous white sediment covered the concrete surface.The cracks on the concrete surface were completely shielded,and the rising temperature on infrared thermal image of the concrete after repair was lower than before.Besides,through analysis by SEM,EDS,and XRD,the products formed after repair were found to be calcite-type CaCO_(3) with high purity,and the crystals exhibited different morphological features.The above results indicate that soybean urease can regulate and induce the formation of calcium carbonate,and the precipitate is innocuous and harmless,suitable for a new type of concrete crack repair material. 展开更多
关键词 soybean urease concrete calcium carbonate REMEDIATION DAMAGE
下载PDF
Determination of the Apparent Activation Energy of Concrete Carbonation 被引量:2
19
作者 李果 YUAN Yingshu +1 位作者 DU Jianmin JI Yongsheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期944-949,共6页
Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate conditi... Accelerated carbonation experiments about the development of carbonation rates of ordinary Portland cement concrete under different artificial climates were carried out. Six water cement ratios and six climate condition combinations of temperature and relative humidity were used. Results indicate that changes of concrete carbonation rate with environmental temperature agree the Arrhenius law well, which suggests concrete carbonation rate has obvious dependence on temperature. The higher the temperature is, the more quickly the concrete carbonates, and at the same time it is also affected by environmental relative humidity. Thereafter, the apparent activation energy Ea of concrete carbonation reaction was obtained, ranging from 16.8 to 20.6 kJ/mol corresponding 0.35-0.74 water cement ratio, and lower water cement ratio will cause the apparent activation energy increase. Concrete carbonation rates will increase 1.1-1.69 times as temperature increase every 10 ℃ at the temperature range of 10 to 60 ℃. 展开更多
关键词 concrete carbonation rate apparent activation energy TEMPERATURE
下载PDF
Durability of Lining Concrete of Subsea Tunnel under Combined Action of Freeze-thaw Cycle and Carbonation 被引量:2
20
作者 田砾 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第4期779-782,共4页
Through the fast freeze-thaw cycle test,accelerated carbonation test,and natural carbonation test,the durability performance of lining concrete under combined action of freeze-thaw cycle and carbonation were studied.T... Through the fast freeze-thaw cycle test,accelerated carbonation test,and natural carbonation test,the durability performance of lining concrete under combined action of freeze-thaw cycle and carbonation were studied.The experimental results indicate that freeze-thaw cycle apparently accelerates the process of concrete carbonation and carbonation deteriorates the freeze resistance of concrete.Under the combined action of freeze-thaw cycle and carbonation,the durability of lining concrete decreases.The carbonation depth of lining concrete at tunnel openings under freeze-thaw cycles and tunnel condition was predicted.For the high performance concrete with proposed mix ratio,the lining concrete tends to be unsafe because predicted carbonation depth exceeds the thickness of reinforced concrete protective coating.Adopting other measurements simultaneously to improve the durability of lining concrete at the tunnel openings is essential. 展开更多
关键词 jiaozhou Bay subsea tunnel lining concrete durability carbonation property freeze-thaw cyclecorrosion resistance
下载PDF
上一页 1 2 160 下一页 到第
使用帮助 返回顶部