SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish ...SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.展开更多
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei...Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.展开更多
Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundle...Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundles with PEKK as effi-ciently as possible.We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280,320,340 and 360℃.The excellent wettability or infiltra-tion of the PEKK solution guarantees a full covering and its tight binding to CFs,making it possible to evaluate the interfacial shear strength(IFSS)with the microdroplet method.The interior of the CF bundles is completely and uniformly filled with PEKK by solu-tion impregnation,leading to a high interlaminar shear strength(ILSS).The maximum IFSS and ILSS reached 107.8 and 99.3 MPa,respectively.Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.展开更多
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf...We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.展开更多
Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further devel...Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.展开更多
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ...Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.展开更多
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min...An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.展开更多
Interfacial electronic structure modulation of nickel-based electrocata-lysts is significant in boosting energy-conversion-relevant urea oxidation reaction(UOR).Herein,porous carbon nanofibers confined mixed Ni-based ...Interfacial electronic structure modulation of nickel-based electrocata-lysts is significant in boosting energy-conversion-relevant urea oxidation reaction(UOR).Herein,porous carbon nanofibers confined mixed Ni-based crystal phases of Ni_(2)P and NiF_(2) are developed via fluorination and phosphorization of Ni coated carbon nanofiber(Ni_(2)P/NiF_(2)/PCNF),which possess sufficient mesoporous and optimized Gibbs adsorption free energy by mixed phase-induced charge redistribution.This novel system further reduces the reaction energy barrier and improves the reaction activity by addressing the challenges of low intrinsic activity,difficulty in active site formation,and insufficient synergism.A considerably high current density of 254.29 mA cm^(-2) is reached at 1.54 V versus reversible hydrogen electrode on a glass carbon electrode,and the cell voltage requires 1.39 V to get 10 mA cm^(-2) in hydrogen generation,with very good stability,about 190 mV less than that of the traditional water electrolysis.The facile active phase formation and high charge transfer ability induced by asymmetric charge redistribution are found in the interface,where the urea molecules tend to bond with Ni atoms on the surface of heterojunction,and the rate-determining step is changed from CO_(2) desorption to the fourth H-atom deprotonation.The work reveals a novel catalyst system by interfacial charge redistribution induced by high bond polarity for energy-relevant catalysis reactions.展开更多
The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performan...The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.展开更多
Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use...Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.展开更多
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
Owing to its high sensitivity,selectivity,and accuracy,liquid chromatography coupled with mass spectrometry(LC-MS)is commonly employed to screen,confirm,and quantify impurities in drugs[1].However,LC-MS has certain dr...Owing to its high sensitivity,selectivity,and accuracy,liquid chromatography coupled with mass spectrometry(LC-MS)is commonly employed to screen,confirm,and quantify impurities in drugs[1].However,LC-MS has certain drawbacks such as complicated pretreatment steps,long analysis time,large consumption of organic solvents,high maintenance costs,and,most notably,the need for high-pressure pumps and compatible hardware because of the high column backpressure[2].In this study,a two-dimensional(2D)microscale carbon fiber(CF)/active carbon fiber(ACF)system combined with a quadrupole time-of-flight high-resolution mass spectrometry(2DmCFs-QTOF-HRMS)system was developed to rapid screening impurities in the typical three generations of oral cephalosporins,i.e.,cephalexin tablets(CPXTs),cefuroxime axetil tablets(CFATs),and cefixime tablets(CFXTs)(Fig.S1).The“fuzzy chromatographic separation”sample pretreatment method separates complex samples into high-,medium-,and weak-polar fractions for successive detection of MS,achieving effective reduction of the ion suppression effect in electrospray ionization(ESI)-MS and improving the MS detection sensitivity.Compared to high performance liquid chromatography(HPLC)-MS,this method has distinct advantages such as less organic solvent consumption(1.5 mL),shorter separation and analysis times(5 min),more information on impurities,and high reproducibility.展开更多
The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing me...The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.展开更多
Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combi...Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combination with carbon materials.In this study,we synthesized a composite material by hydrothermally dispersed 4,6,and 10 wt%carbon nanotubes(CNT)into ternary cobaltbismuth-samarium hydroxide(CoBiSm-TOH).These nanocomposites were employed as the material for the working electrode in a supercapacitor.The findings reveal that at 1.5 A/g,the specific capacitance of CNT3@CoBiSm-TOH,using a three-electrode system,was found to be 852.91 F/g,higher than that of CoBi-BOH,CoBiSm-TOH,CNT1@CoBiSm-TOH and CNT5@CoBiSm-TOH-measuring 699.69,750.34,789.54 and 817.79 F/g,respectively.Moreover,CNT3@CoBiSm-TOH electrodes exhibited a capacitance retention of around 88%over 10,000 cycles.To demonstrate practical applicability,CNT3@CoBiSm-TOH was grown on woven carbon fiber(WCF),and a solid-state supercapacitor device was developed using the VARTM(vacuum-assisted resin transfer molding).This device displayed a specific capacitance of 272.67 F/g at 2.25 A/g.Notably,it achieved a maximum energy density of 53.01 Wh/kg at a power density of 750 W/kg and sustained excellent cycle stability over 50,000 cycles,maintaining 70%of its initial capacitance.These results underscore the importance of interfacial nanoengineering and provide crucial insights for the development of future energy storage devices.展开更多
Carbon fiber reinforced polyamide 12(CF/PA12),a new material renowned for its excellent mechanical and thermal properties,has drawn significant industry attention.Using the steady-state research to heat transfer,a ser...Carbon fiber reinforced polyamide 12(CF/PA12),a new material renowned for its excellent mechanical and thermal properties,has drawn significant industry attention.Using the steady-state research to heat transfer,a series of simulations to investigate the heat transfer properties of CF/PA12 were conducted in this study.Firstly,by building two-and three-dimensional models,the effects of the porosity,carbon fiber content,and arrangement on the heat transfer of CF/PA12 were examined.A validation of the simulation model was carried out and the findings were consistent with those of the experiment.Then,the simulation results using the above models showed that within the volume fraction from 0% to 28%,the thermal conductivity of CF/PA12 increased greatly from 0.0242 W/(m·K)to 10.8848 W/(m·K).The increasing porosity had little influence on heat transfer characteristic of CF/PA12.The direction of the carbon fiber arrangement affects the heat transfer impact,and optimal outcomes were achieved when the heat flow direction was parallel to the carbon fiber.This research contributes to improving the production methods and broadening the application scenarios of composite materials.展开更多
In today's world,where innovation reigns supreme,materials that push the boundaries of what's possible are constantly being developed.One such material is carbon fiber,a remarkable substance that has transform...In today's world,where innovation reigns supreme,materials that push the boundaries of what's possible are constantly being developed.One such material is carbon fiber,a remarkable substance that has transformed countless industries.This article delves into the fascinating wo rld of carbon fiber,explo ringits key properties that make it a game-changer.展开更多
Carbon nanofibers have revolutionized nanotechnology due to their potential applications in emerging frontiers of research and industrial sectors. This can be attributed to their superior properties such as higher mec...Carbon nanofibers have revolutionized nanotechnology due to their potential applications in emerging frontiers of research and industrial sectors. This can be attributed to their superior properties such as higher mechanical strength, unique surface characteristics, and improved adherence that is transmitted into the polymer matrix to form a nanocomposite with improved properties. Polymethyl methacrylate is a common carbon source for the synthesis of carbon nanofibres of its high mechanical strength, thermal stability, and low moisture and water absorbing capacity that allows its products to have several applications. In this work, we report the successful electrospinning of carbon nanofibres from Poly methyl methacrylate and functionalizing the resulting carbon nanofibres. The functionalized carbon nanofibres were analyzed to determine their solubility/dispersion in selected organic solvents, then characterized using Fourier transform infra-red spectroscopy, Raman spectroscopy, scanning electron microscopy combined with Energy dispersive spectroscopy and Thermalgravimetric analysis.展开更多
Marl,Germany.Evonik is introducing a new carbon-fiber reinforced PEEK filament,for use in 3D printed medical implants.This smart biomaterial can be processed in common extrusion-based3D printing technologies such as f...Marl,Germany.Evonik is introducing a new carbon-fiber reinforced PEEK filament,for use in 3D printed medical implants.This smart biomaterial can be processed in common extrusion-based3D printing technologies such as fused filament fabrication (FFF).The specialty chemicals company will present the new product for the first time at coming next medical technology and 3D printing related trade shows.展开更多
Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we...Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.展开更多
Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ po...Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ polyaniline(PANI)/silver nanowires(Ag NWs) composites with a “branch-trunk” interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional(1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of Ag NWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI(branch) was firmly attached to the CF(trunk) through polydopamine(PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:51971065Innovation Program of Shanghai Municipal Education Commission,Grant/Award Number:2019-01-07-00-07-E00028。
文摘SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices.
基金Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province,Grant/Award Number:LR20E020001Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J20-21-909+4 种基金Science and Technology Department of Zhejiang Province,Grant/Award Number:2023C01231National Natural Science Foundation of China,Grant/Award Numbers:52372235,52073252,52002052,22379020,U20A20253,21972127,22279116Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Grant/Award Number:SKLPEE-KF202206Key Research and Development Project of Science and Technology Department of Sichuan Province,Grant/Award Number:2022YFSY0004Ministry of Education,Grant/Award Number:KFM 202202。
文摘Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.
文摘Interfacial adhesion between carbon fibers(CF)and polyetherketoneketone(PEKK)is a key factor that affects the mechanical performances of their composites.It is therefore of great importance to impregnate the CF bundles with PEKK as effi-ciently as possible.We report that PEKK with a good dispersion in a mixed solution of 4-chlorophenol and 1,2-dichloroethane can be introduced onto CF surfaces by solution impregnation and curing at 280,320,340 and 360℃.The excellent wettability or infiltra-tion of the PEKK solution guarantees a full covering and its tight binding to CFs,making it possible to evaluate the interfacial shear strength(IFSS)with the microdroplet method.The interior of the CF bundles is completely and uniformly filled with PEKK by solu-tion impregnation,leading to a high interlaminar shear strength(ILSS).The maximum IFSS and ILSS reached 107.8 and 99.3 MPa,respectively.Such superior shear properties are ascribed to the formation of amorphous PEKK in the small spaces between CFs.
基金Supported by Innovation and Technology Fund (No.ITP/045/19AP)Commercial Research&Development (CRD) Funding Supported by Hong Kong Productivity Council (No.10008787)。
文摘We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters.
基金supported by the National Natural Science Foundation of China (Grant Nos.21573109,21206069)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
文摘Cobalt sulphides attract much attention as anode materials for Li-ion batteries(LIBs).However,its poor conductivity,low initial column efficiency and large volume changes during cycling have hindered its further development.Herein,novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth(CFC)by two hydrothermal reactions followed with carbon coating via carbonizing dopamine(CoS NS@C/CFC).As a freestanding anode,the nanosheet structure of CoS not only accommodates the volume variation,but also provides a large interface area to proceed the charge transfer reaction.In addition,CFC works as both a three-dimensional skeleton and an active substance which can further improve the areal capacity of the resulting electrode.Furthermore,the coated carbon combined with the CFC work as a 3D conductive network to facilitate the electron conduction.The obtained CoS NS@C/CFC,and the contrast sample prepared with the same procedure but without carbon coating(CoS NS/CFC),are characterized with XRD,SEM,TEM,XPS and electrochemical measurements.The results show that the CoS NS@C/CFC possesses much improved electrochemical performance due to the synergistic effect of nanosheet CoS,the coated carbon and the CFC substrate,exhibiting high initial columbic efficiency(~87%),high areal capacity(2.5 at 0.15 mA cm−2),excellent rate performance(1.6 at 2.73 mA cm−2)and improved cycle stability(87.5%capacity retention after 300 cycles).This work may provide a new route to explore freestanding anodes with high areal specific capacity for LIBs.
基金the financial support by the Council of Scientific&Industrial Research(CSIR)-Research Scheme,India(22/0809/2019-EMR-II)。
文摘Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.
基金the support of the Joint Funds of the Natural Science Foundation of Hubei Province(2022CFD130)the Technology Innovation Project of Hubei Province(Key Program,No.2023BEB010)+1 种基金the Key Research and Development Program of Hubei Province(No.2021BGD015)the Knowledge Innovation Project of Wuhan(No.2022010801010259).
文摘An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.
基金The work was supported by the National Natural Science Foundation of China(22272148,21972124)Chun Yin thanks the support of Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_3720).
文摘Interfacial electronic structure modulation of nickel-based electrocata-lysts is significant in boosting energy-conversion-relevant urea oxidation reaction(UOR).Herein,porous carbon nanofibers confined mixed Ni-based crystal phases of Ni_(2)P and NiF_(2) are developed via fluorination and phosphorization of Ni coated carbon nanofiber(Ni_(2)P/NiF_(2)/PCNF),which possess sufficient mesoporous and optimized Gibbs adsorption free energy by mixed phase-induced charge redistribution.This novel system further reduces the reaction energy barrier and improves the reaction activity by addressing the challenges of low intrinsic activity,difficulty in active site formation,and insufficient synergism.A considerably high current density of 254.29 mA cm^(-2) is reached at 1.54 V versus reversible hydrogen electrode on a glass carbon electrode,and the cell voltage requires 1.39 V to get 10 mA cm^(-2) in hydrogen generation,with very good stability,about 190 mV less than that of the traditional water electrolysis.The facile active phase formation and high charge transfer ability induced by asymmetric charge redistribution are found in the interface,where the urea molecules tend to bond with Ni atoms on the surface of heterojunction,and the rate-determining step is changed from CO_(2) desorption to the fourth H-atom deprotonation.The work reveals a novel catalyst system by interfacial charge redistribution induced by high bond polarity for energy-relevant catalysis reactions.
基金supported by National Natural Science Foundation of China(51903113 and 52073133)China Postdoctoral Science Foundation(2022T150282)+1 种基金Lanzhou Young Science and Technology Talent Innovation Project(2023-QN-101the Program for Hongliu Excellent and Distinguished Young Scholars at Lanzhou University of Technology.
文摘The engineering of plant-based precursor for nitrogen doping has become one of the most promising strategies to enhance rate capability of hard carbon materials for sodium-ion batteries;however,the poor rate performance is mainly caused by lack of pyridine nitrogen,which often tends to escape because of high temperature in preparation process of hard carbon.In this paper,a high-rate kapok fiber-derived hard carbon is fabricated by cross-linking carboxyl group in 2,6-pyridinedicarboxylic acid with the exposed hydroxyl group on alkalized kapok with assistance of zinc chloride.Specially,a high nitrogen doping content of 4.24%is achieved,most of which are pyridine nitrogen;this is crucial for improving the defect sites and electronic conductivity of hard carbon.The optimized carbon with feature of high nitrogen content,abundant functional groups,degree of disorder,and large layer spacing exhibits high capacity of 401.7 mAh g^(−1)at a current density of 0.05 A g^(−1),and more importantly,good rate performance,for example,even at the current density of 2 A g^(−1),a specific capacity of 159.5 mAh g^(−1)can be obtained.These findings make plant-based hard carbon a promising candidate for commercial application of sodium-ion batteries,achieving high-rate performance with the enhanced pre-cross-linking interaction between plant precursors and dopants to optimize aromatization process by auxiliary pyrolysis.
文摘Electrochemical detection of 3-methyl-4-nitrophenol (MNP) in direct phenol oxidation occurs at high potentials and generally leads to progressive passivation of the electrochemical sensor. This study describes the use of a carbon fiber microelectrode modified with a tetrasulfonated nickel phthalocyanine complex for the detection of MNP at a lower potential than that of direct phenol oxidation. The MNP voltammogram showed the presence of an anodic peak at -0.11 V vs SCE, corresponding to the oxidation of the hydroxylamine group generated after the reduction of the nitro group. The effect of buffer pH on the peak current and SWV parameters such as frequency, scan increment, and pulse amplitude were studied and optimized to have better electrochemical response of the proposed sensor. With these optimal parameters, the calibration curve shows that the peak current varied linearly as a function of MNP concentration, leading to a limit of detection (LoD) of 1.1 μg/L. These results show an appreciable sensitivity of the sensor for detecting the MNP at relatively low potentials, making it possible to avoid passivation phenomena.
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
基金supported by a grant from the National Natural Science Foundation of China(Grant Nos.:22176164 and 21904113)the Higher Education Discipline Innovation Project,China(Project No.:D18012).
文摘Owing to its high sensitivity,selectivity,and accuracy,liquid chromatography coupled with mass spectrometry(LC-MS)is commonly employed to screen,confirm,and quantify impurities in drugs[1].However,LC-MS has certain drawbacks such as complicated pretreatment steps,long analysis time,large consumption of organic solvents,high maintenance costs,and,most notably,the need for high-pressure pumps and compatible hardware because of the high column backpressure[2].In this study,a two-dimensional(2D)microscale carbon fiber(CF)/active carbon fiber(ACF)system combined with a quadrupole time-of-flight high-resolution mass spectrometry(2DmCFs-QTOF-HRMS)system was developed to rapid screening impurities in the typical three generations of oral cephalosporins,i.e.,cephalexin tablets(CPXTs),cefuroxime axetil tablets(CFATs),and cefixime tablets(CFXTs)(Fig.S1).The“fuzzy chromatographic separation”sample pretreatment method separates complex samples into high-,medium-,and weak-polar fractions for successive detection of MS,achieving effective reduction of the ion suppression effect in electrospray ionization(ESI)-MS and improving the MS detection sensitivity.Compared to high performance liquid chromatography(HPLC)-MS,this method has distinct advantages such as less organic solvent consumption(1.5 mL),shorter separation and analysis times(5 min),more information on impurities,and high reproducibility.
基金financially supported by the National Natural Science Foundation of China (22178008, 22125801)Petrochina (2022DJ6004)。
文摘The separation of aromatic/aliphatic hydrocarbon mixtures is crucial in the petrochemical industry.Pervaporation is regarded as a promising approach for the separation of aromatic compounds from alkanes. Developing membrane materials with efficient separation performance is still the main task since the membrane should provide chemical stability, high permeation flux, and selectivity. In this study, the hyperbranched polymer(HBP) was deposited on the outer surface of a polyvinylidene fluoride(PVDF)hollow-fiber ultrafiltration membrane by a facile dip-coating method. The dip-coating rate, HBP concentration, and thermal cross-linking temperature were regulated to optimize the membrane structure.The obtained HBP/PVDF hollow-fiber-composite membrane had a good separation performance for aromatic/aliphatic hydrocarbon mixtures. For the 50%/50%(mass) toluene/n-heptane mixture, the permeation flux of optimized composite membranes could reach 1766 g·m^(-2)·h^(-1), with a separation factor of 4.1 at 60℃. Therefore, the HBP/PVDF hollow-fiber-composite membrane has great application prospects in the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures.
基金financially supported by 2024 Gyeongbuk Green Environment Support Center。
文摘Multi-metal hydroxides possess unique physical and chemical properties,making them promising candidates for supercapacitor working electrodes.Enhancing their electrochemical performance can be achieved through a combination with carbon materials.In this study,we synthesized a composite material by hydrothermally dispersed 4,6,and 10 wt%carbon nanotubes(CNT)into ternary cobaltbismuth-samarium hydroxide(CoBiSm-TOH).These nanocomposites were employed as the material for the working electrode in a supercapacitor.The findings reveal that at 1.5 A/g,the specific capacitance of CNT3@CoBiSm-TOH,using a three-electrode system,was found to be 852.91 F/g,higher than that of CoBi-BOH,CoBiSm-TOH,CNT1@CoBiSm-TOH and CNT5@CoBiSm-TOH-measuring 699.69,750.34,789.54 and 817.79 F/g,respectively.Moreover,CNT3@CoBiSm-TOH electrodes exhibited a capacitance retention of around 88%over 10,000 cycles.To demonstrate practical applicability,CNT3@CoBiSm-TOH was grown on woven carbon fiber(WCF),and a solid-state supercapacitor device was developed using the VARTM(vacuum-assisted resin transfer molding).This device displayed a specific capacitance of 272.67 F/g at 2.25 A/g.Notably,it achieved a maximum energy density of 53.01 Wh/kg at a power density of 750 W/kg and sustained excellent cycle stability over 50,000 cycles,maintaining 70%of its initial capacitance.These results underscore the importance of interfacial nanoengineering and provide crucial insights for the development of future energy storage devices.
基金Projects(52206216,52376085)supported by the National Natural Science Foundation of ChinaProject(2023JJ40744)supported by the Natural Science Foundation of Hunan Province,China。
文摘Carbon fiber reinforced polyamide 12(CF/PA12),a new material renowned for its excellent mechanical and thermal properties,has drawn significant industry attention.Using the steady-state research to heat transfer,a series of simulations to investigate the heat transfer properties of CF/PA12 were conducted in this study.Firstly,by building two-and three-dimensional models,the effects of the porosity,carbon fiber content,and arrangement on the heat transfer of CF/PA12 were examined.A validation of the simulation model was carried out and the findings were consistent with those of the experiment.Then,the simulation results using the above models showed that within the volume fraction from 0% to 28%,the thermal conductivity of CF/PA12 increased greatly from 0.0242 W/(m·K)to 10.8848 W/(m·K).The increasing porosity had little influence on heat transfer characteristic of CF/PA12.The direction of the carbon fiber arrangement affects the heat transfer impact,and optimal outcomes were achieved when the heat flow direction was parallel to the carbon fiber.This research contributes to improving the production methods and broadening the application scenarios of composite materials.
文摘In today's world,where innovation reigns supreme,materials that push the boundaries of what's possible are constantly being developed.One such material is carbon fiber,a remarkable substance that has transformed countless industries.This article delves into the fascinating wo rld of carbon fiber,explo ringits key properties that make it a game-changer.
文摘Carbon nanofibers have revolutionized nanotechnology due to their potential applications in emerging frontiers of research and industrial sectors. This can be attributed to their superior properties such as higher mechanical strength, unique surface characteristics, and improved adherence that is transmitted into the polymer matrix to form a nanocomposite with improved properties. Polymethyl methacrylate is a common carbon source for the synthesis of carbon nanofibres of its high mechanical strength, thermal stability, and low moisture and water absorbing capacity that allows its products to have several applications. In this work, we report the successful electrospinning of carbon nanofibres from Poly methyl methacrylate and functionalizing the resulting carbon nanofibres. The functionalized carbon nanofibres were analyzed to determine their solubility/dispersion in selected organic solvents, then characterized using Fourier transform infra-red spectroscopy, Raman spectroscopy, scanning electron microscopy combined with Energy dispersive spectroscopy and Thermalgravimetric analysis.
文摘Marl,Germany.Evonik is introducing a new carbon-fiber reinforced PEEK filament,for use in 3D printed medical implants.This smart biomaterial can be processed in common extrusion-based3D printing technologies such as fused filament fabrication (FFF).The specialty chemicals company will present the new product for the first time at coming next medical technology and 3D printing related trade shows.
基金National Natural Science Foundation of China(Nos.52225204,52173233 and 52202085)Innovation Program of Shanghai Municipal Education Commission,China(No.2021-01-07-00-03-E00109)+3 种基金Natural Science Foundation of Shanghai,China(No.23ZR1479200)“Shuguang Program”Supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission,China(No.20SG33)Fundamental Research Funds for the Central Universities,China(No.2232024Y-01)DHU Distinguished Young Professor Program,China(Nos.LZA2022001 and LZB2023002)。
文摘Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR.
基金supported by the National Nature Science Foundation of China (Nos. 51971111, 52273247)the facilities in the Center for Microscopy and Analysis at Nanjing University of Aeronautics and Astronautics and the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics (No. ILA220461A22)。
文摘Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ polyaniline(PANI)/silver nanowires(Ag NWs) composites with a “branch-trunk” interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional(1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of Ag NWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI(branch) was firmly attached to the CF(trunk) through polydopamine(PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.