Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of ...Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.展开更多
In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main compos...In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm^(-1) and a broad peak at 1600 cm^(-1), which indicatedthat the films were DLC films.展开更多
Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material...Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material based on Bi nanoparticles in situ encapsulated by carbon film (Bi@CF) is prepared successfully through a facile metal–organic framework (MOF)-engaged approach.As anode materials for LIBs,the Bi@CF composites achieved high reversible capacities of 705 and 538 mAh g^(-1)at 0.2 and 0.5 A g^(-1) after200 cycles,and long cycling performance with a stable capacity of 306 mAh g^(-1)at 1.0 A g^(-1) even after 900 cycles.In situ X-ray diffraction (XRD) measurements clearly revealed the conversion between Bi and Li_(3)Bi during the alloying/dealloying process,confirming the good electrochemical reversibility of Bi@CF for Li-storage.The reaction kinetics of this Bi@CF composite was further studied by galvanostatic intermittent titration technique (GITT).This work may provide an inspiration for the elaborate design and facile preparation of alloy-type anode materials for high-performance rechargeable batteries.展开更多
This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface ...This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm^2 and a current density of 3.2mA/cm^2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.展开更多
This paper reports that the nano-sheet carbon films (NSCFs) were fabricated on Si wafer chips with hydrogen- methane gas mixture by means of quartz-tube-type microwave plasma chemical vapour deposition (MWPCVD). I...This paper reports that the nano-sheet carbon films (NSCFs) were fabricated on Si wafer chips with hydrogen- methane gas mixture by means of quartz-tube-type microwave plasma chemical vapour deposition (MWPCVD). In order to further improve the field emission (FE) characteristics, a 5-nm Au film was prepared on the samples by using electron beam evaporation. The FE properties were obviously improved due to depositing Au thin film on NSCFs. The FE current density at a macroscopic electric field, E, of 9 V/μm was increased from 12.4 mA/cm2 to 27.2 mA/cm2 and the threshold field was decreased from 2.6 V/μm to 2.0 V/μm for Au-coated carbon films. A modified F-N model considering statistic effects of FE tip structures in the low E region and a space-chavge-limited-current effect in the high E region were applied successfully to explain the FE data of the Au-coated NSCF.展开更多
Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hy...Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.展开更多
Iron catalysis has attracted a wealth of interdependent research for its abundance,low price,and nontoxicity.Herein,a convenient and stable iron oxide(Fe2O3)‐based catalyst,in which active Fe2O3nanoparticles(NPs)were...Iron catalysis has attracted a wealth of interdependent research for its abundance,low price,and nontoxicity.Herein,a convenient and stable iron oxide(Fe2O3)‐based catalyst,in which active Fe2O3nanoparticles(NPs)were embedded into carbon films,was prepared via the pyrolysis of iron‐polyaniline complexes on carbon particles.The obtained catalyst shows a large surface area,uniform pore channel distribution,with the Fe2O3NPs homogeneously dispersed across the hybrid material.Scanning electron microscopy,Raman spectroscopy and X‐ray diffraction analyses of the catalyst prepared at900°C(Fe2O3@G‐C‐900)and an acid‐pretreated commercial activated carbon confirmed that additional carbon materials formed on the pristine carbon particles.Observation of high‐resolution transmission electron microscopy images also revealed that the Fe2O3NPs in the hybrid were encapsulated by a thin carbon film.The Fe2O3@G‐C‐900composite was highly active and stable for the direct selective hydrogenation of nitroarenes to anilines under mild conditions,where previously noble metals were required.The synthetic strategy and the structure of the iron oxide‐based composite may lead to the advancement of cost‐effective and sustainable industrial processes.展开更多
Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectr...Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectroscopy (AES) was used to evaluate nitrogen content, and increasing N2 flow improved N content from 0 to 7.6%. Raman and X-ray photoelectron spectroscopy (XPS) analysis results reveal CN-sp^3C and N-sp^2C structure. With increasing the N2 flow, sp^3C decreases from 73.74% down to 42.66%, and so does N-sp^3C from 68.04% down to 20.23%. The hardness decreases from 29.18 GPa down to 19.74 GPa, and the Young's modulus from 193.03 GPa down to 144.52 GPa.展开更多
Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is invest...Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is investigated by using field emission scanning electron microscope (FESEM) and Raman spectroscopy. These nano^carbon films are possessed of good field emission (FE) characteristics with a low threshold field of 2.6 V/μm and a high current density of 12.6 mA/cm^2 at an electric field of 9 V/μm. As the FE currents tend to be saturated in a high E region, no simple Fowler-Nordheim (F-N) model is applicable. A modified F N model considering statistic effects of FE tip structures and a space-charge-limited-current (SCLC) effect is applied successfully to explaining the FE data observed at low and high electric fields, respectively.展开更多
Amorphous carbon films with high sp2 concentrations are deposited by unbalanced magnetron sputtering with a narrow range of substrate bias voltage. Field emission scanning electron microscopes (FESEMs), high resolut...Amorphous carbon films with high sp2 concentrations are deposited by unbalanced magnetron sputtering with a narrow range of substrate bias voltage. Field emission scanning electron microscopes (FESEMs), high resolution transmission electron microscopes (HRTEMs), atomic force microscopes (AFMs), the Raman spectrometers, nano- indentation, and tribometers are subsequently used to characterize the microstructures and the properties of the resulting films. It is found that the present films are dominated by the sp2 sites. However, the films demonstrate a moderate hardness together with a low internal stress. The high hardness of the deposited film originates from the crosslinking of the sp2 clusters by the sp3 sites. The presence of the graphite-like clusters in the film structure may be responsible for the low internal stress. What is more important is that the resulting films show excellent tribological properties with high load capacity and excellent wear resistance in humid atmospheres. The relationship between the microstructure determined by the deposition condition and the film characteristic is discussed in detail.展开更多
Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the...Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the Hall discharging current and the argon/nitrogen ratio on the DLC film's performance were studied. The experimental results show that the film's surface roughness, the hardness and the Young's modulus increase firstly and then decrease with the bias voltage incrementally increases. Also when the substrate temperature rises, the surface roughness of the film varies slightly, but its hardness and Young's modulus firstly increase followed by a sharp decrease when the temperature surpassing 120 ℃. With the Hall discharging current incrementally rising, the hardness and Young's modulus of the film decrease and the surface roughness of the film on 316L stainless steel firstly decreased and then remains constant.展开更多
The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in t...The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot. The possible reason for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating. For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film, a cluster model with a series of graphite (0001) basal surfaces has been presented, and the theoretical calculations have been performed to investigate work functions of graphite (0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.展开更多
By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Fila...By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Filament Chemical Vapor Deposition (PE-HFCVD). Through two-step processing in an HFCVD reactor, novel nano-structured composite diamond films containing a nanocrystalline diamond layer on the top of a nanocone diamond layer have been synthesized. Well-aligned carbon nanotubes, diamond and graphitic carbon nanocones with controllable alignment orientations have been synthesized by using PE-HFCVD. The orientation of the nanostructures can be controlled by adjusting the working pressure. In a Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) reactor, high-quality diamond films have been synthesized at low temperatures (310℃-550℃) without adding oxygen or halogen gas in a newly developed processing technique. In this process, carbon source originates from graphite etching, instead of hydrocarbon. The lowest growth temperature for the growth of nanocrystalline diamond films with a reasonable growth rate without addition of oxygen or halogen is 260℃.展开更多
Diamond-like carbon (DLC) films have been deposited on glass substrates usingradio-frequency (rf) plasma deposition method. Gamma -ray, ultraviolet (UV) ray were used toirradiate the DLC films. Raman spectroscopy and ...Diamond-like carbon (DLC) films have been deposited on glass substrates usingradio-frequency (rf) plasma deposition method. Gamma -ray, ultraviolet (UV) ray were used toirradiate the DLC films. Raman spectroscopy and infrared (IR) spectroscopy were use to characterizethe changing characteristics of SP^3 C-H bond and hydrogen content in the films due to theirradiations. The results show that, the damage degrees induced by the UV ray on the SP^3 C-H bondsare much stronger than that by the gamma -ray. When the irradiation dose of gamma -ray reaches 1 OX10^4 Gy, the SP^3 C-H bond reduces about 50 percent in number. The square electrical resistance ofthe films is reduced due to the irradiation of UV ray and this is caused by severe oxidation of thefilms. By using the results on optical gap of the films and the fully constrained network theory,the hydrogen content in the as-deposited films is estimated to be l0-25at. percent.展开更多
In order to study the influence of nitrogen incorporated into amorphous carbon films, nitrogenated amorphous carbon films have been deposited by using surface wave plasma chemical vapor deposition under various ratios...In order to study the influence of nitrogen incorporated into amorphous carbon films, nitrogenated amorphous carbon films have been deposited by using surface wave plasma chemical vapor deposition under various ratios of N2/CH4 gas flow. Optical emission spectroscopy has been used to monitor plasma features near the deposition zone. After deposition, the samples are checked by Raman spectroscopy and x-ray photo spectroscopy (XPS). Optical emission intensities of CH and N atom in the plasma are found to be enhanced with the increase in the N2/CH4 gas flow ratio, and then reach their maximums when the N2/CH4 gas flow ratio is 5%. A contrary variation is found in Raman spectra of deposited films. The intensity ratio of the D band to the G band (Id/Ig) and the peak positions of the G and D bands all reach their minimums when the N2/CH4 gas flow ratio is 5%. These show that the structure of amorphous carbon films has been significantly modified by introduction of nitrogen.展开更多
Fluorinated amorphous carbon films (a-C:F) were prepared at different temperatures using a microwave electron cyclotron resonance chemical vapor deposition (ECR-CVD) reactor with CHF3 and C2H2 as source gases. Films w...Fluorinated amorphous carbon films (a-C:F) were prepared at different temperatures using a microwave electron cyclotron resonance chemical vapor deposition (ECR-CVD) reactor with CHF3 and C2H2 as source gases. Films were annealed at 500℃ in vacuum ambience in order to investigate the relationship of their thermal stability, optical and electrical properties with deposition temperature. Results indicate that the films deposited at high temperature have a less CFX bonding and a more cross-linking structure thus a better thermal stability. They also have a lower bandgap, higher dielectric constant and higher leakage current.展开更多
Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance——plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) fil...Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance——plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered——pulsed cathodic arc discharge, The surface and mechanical properties of these films are compared using atomic force microscopebased tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp^3 hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure, The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp^3 hybridized carbon enriched surface layers, The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.展开更多
Direct current metal filtered cathodic vacuum arc (FCVA) and acetylene gas (C2H2) were wielded to synthesize Ti-containing amorphous carbon films on Si (100). The influence of substrate bias voltage and acetylen...Direct current metal filtered cathodic vacuum arc (FCVA) and acetylene gas (C2H2) were wielded to synthesize Ti-containing amorphous carbon films on Si (100). The influence of substrate bias voltage and acetylene gas on the microstructure and mechanical properties of the films were investigated. The results show that the phase of TiC in the (111) preferential crystallographic orientation exists in the film,and the main existing pattern of carbon is sp2. With increasing the acetylene flow rate,the contents of Ti and TiC phase of the film gradually reduce; however,the thickness of the film increases. When the substrate bias voltage reaches -600 V,the internal stress of the film reaches 1.6 GPa. The micro-hardness and elastic modulus of the film can reach 33.9 and 237.6 GPa,respectively,and the friction coefficient of the film is 0.25.展开更多
Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (A...Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications.展开更多
The field emission (FE) characteristics of nano-structured carbon films (NSCFs) are investigated. The saturation behaviour of the field emission current density found at high electric field E cannot be reasonably ...The field emission (FE) characteristics of nano-structured carbon films (NSCFs) are investigated. The saturation behaviour of the field emission current density found at high electric field E cannot be reasonably explained by the traditional Fowler-Nordheim (F-N) theory. A three-region E model and the curve-fitting method are utilized for discussing the FE characteristics of NSCFs. In the low, high, and middle E regions, the FE mechanism is reasonably explained by a modified F-N model, a corrected space-charge-limited-current (SCLC) model and the joint model of F N and SCLC mechanism, respectively. Moreover, the measured FE data accord well with the results from our corrected theoretical model.展开更多
基金Project (50905178) supported by the National Natural Science Foundation of ChinaProject (2011CB706603) supported by the National Basic Research Program of China
文摘Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.
基金Our work is supported by the Natural Science Fund of Jiangsu Province(BK20001414).
文摘In this paper, diamond-like carbon (DLC) films were deposited on Ti alloy by electro-deposition. DLC films were brown andcomposed of the compact grains whose diameter was about 400 nm. Examined by XPS, the main composition of the filmswas carbon. In the Raman spectrum, there were a broad peak at 1350 cm^(-1) and a broad peak at 1600 cm^(-1), which indicatedthat the films were DLC films.
基金supported by the 100 Talents Plan Foundation of Sun Yat-sen UniversityThousand Youth Talents Plan of China and Guangdong Province+1 种基金the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069)the NSFC Projects (22075321, 21821003 and 21890380)。
文摘Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material based on Bi nanoparticles in situ encapsulated by carbon film (Bi@CF) is prepared successfully through a facile metal–organic framework (MOF)-engaged approach.As anode materials for LIBs,the Bi@CF composites achieved high reversible capacities of 705 and 538 mAh g^(-1)at 0.2 and 0.5 A g^(-1) after200 cycles,and long cycling performance with a stable capacity of 306 mAh g^(-1)at 1.0 A g^(-1) even after 900 cycles.In situ X-ray diffraction (XRD) measurements clearly revealed the conversion between Bi and Li_(3)Bi during the alloying/dealloying process,confirming the good electrochemical reversibility of Bi@CF for Li-storage.The reaction kinetics of this Bi@CF composite was further studied by galvanostatic intermittent titration technique (GITT).This work may provide an inspiration for the elaborate design and facile preparation of alloy-type anode materials for high-performance rechargeable batteries.
文摘This paper reported that the nano-catkin carbon films were prepared on Si substrates by means of electron cyclotron resonance microwave plasma chemical vapour deposition in a hydrogen and methane mixture. The surface morphology and the structure of the fabricated films were characterized by using scanning electron microscopes and Raman spectroscopy, respectively. The stable field emission properties with a low threshold field of 5V/μm corresponding to a current density of about 1μA/cm^2 and a current density of 3.2mA/cm^2 at an electric field of 10V/μm were obtained from the carbon film deposited at CH4 concentration of 8%. The mechanism that the threshold field decreased with the increase of the CH4 concentration and the high emission current appeared at the high CH4 concentration was explained by using the Fowler-Nordheim theory.
文摘This paper reports that the nano-sheet carbon films (NSCFs) were fabricated on Si wafer chips with hydrogen- methane gas mixture by means of quartz-tube-type microwave plasma chemical vapour deposition (MWPCVD). In order to further improve the field emission (FE) characteristics, a 5-nm Au film was prepared on the samples by using electron beam evaporation. The FE properties were obviously improved due to depositing Au thin film on NSCFs. The FE current density at a macroscopic electric field, E, of 9 V/μm was increased from 12.4 mA/cm2 to 27.2 mA/cm2 and the threshold field was decreased from 2.6 V/μm to 2.0 V/μm for Au-coated carbon films. A modified F-N model considering statistic effects of FE tip structures in the low E region and a space-chavge-limited-current effect in the high E region were applied successfully to explain the FE data of the Au-coated NSCF.
基金supported by Shenzhen Key Laboratory of Sensors Technology Open Fund of China (Nos.SST200908, SST200911)
文摘Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.
基金supported by the National Natural Science Foundation of China(21473155,21273198)Natural Science Foundation of Zhejiang Province(LZ12B03001)~~
文摘Iron catalysis has attracted a wealth of interdependent research for its abundance,low price,and nontoxicity.Herein,a convenient and stable iron oxide(Fe2O3)‐based catalyst,in which active Fe2O3nanoparticles(NPs)were embedded into carbon films,was prepared via the pyrolysis of iron‐polyaniline complexes on carbon particles.The obtained catalyst shows a large surface area,uniform pore channel distribution,with the Fe2O3NPs homogeneously dispersed across the hybrid material.Scanning electron microscopy,Raman spectroscopy and X‐ray diffraction analyses of the catalyst prepared at900°C(Fe2O3@G‐C‐900)and an acid‐pretreated commercial activated carbon confirmed that additional carbon materials formed on the pristine carbon particles.Observation of high‐resolution transmission electron microscopy images also revealed that the Fe2O3NPs in the hybrid were encapsulated by a thin carbon film.The Fe2O3@G‐C‐900composite was highly active and stable for the direct selective hydrogenation of nitroarenes to anilines under mild conditions,where previously noble metals were required.The synthetic strategy and the structure of the iron oxide‐based composite may lead to the advancement of cost‐effective and sustainable industrial processes.
文摘Nitrogen doped diamond-like carbon (DLC:N) films were prepared by electron cyclotron resonance chemical vapor deposition (ECR-CVD) on polycrystalline Si chips. Film thickness is about 50 nm. Auger electron spectroscopy (AES) was used to evaluate nitrogen content, and increasing N2 flow improved N content from 0 to 7.6%. Raman and X-ray photoelectron spectroscopy (XPS) analysis results reveal CN-sp^3C and N-sp^2C structure. With increasing the N2 flow, sp^3C decreases from 73.74% down to 42.66%, and so does N-sp^3C from 68.04% down to 20.23%. The hardness decreases from 29.18 GPa down to 19.74 GPa, and the Young's modulus from 193.03 GPa down to 144.52 GPa.
文摘Nano-sheet carbon films are prepared on Si wafers by means of quartz-tube microwave plasma chemical vapour deposition (MPCVD) in a gas mixture of hydrogen and methane. The structure of the fabricated films is investigated by using field emission scanning electron microscope (FESEM) and Raman spectroscopy. These nano^carbon films are possessed of good field emission (FE) characteristics with a low threshold field of 2.6 V/μm and a high current density of 12.6 mA/cm^2 at an electric field of 9 V/μm. As the FE currents tend to be saturated in a high E region, no simple Fowler-Nordheim (F-N) model is applicable. A modified F N model considering statistic effects of FE tip structures and a space-charge-limited-current (SCLC) effect is applied successfully to explaining the FE data observed at low and high electric fields, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50705093 and 50575217)the Innovative Group Foundation of the National Natural Science Foundation of China(Grant No.50421502)the National Basic ResearchProgram of China(Grant No.2007CB607601)
文摘Amorphous carbon films with high sp2 concentrations are deposited by unbalanced magnetron sputtering with a narrow range of substrate bias voltage. Field emission scanning electron microscopes (FESEMs), high resolution transmission electron microscopes (HRTEMs), atomic force microscopes (AFMs), the Raman spectrometers, nano- indentation, and tribometers are subsequently used to characterize the microstructures and the properties of the resulting films. It is found that the present films are dominated by the sp2 sites. However, the films demonstrate a moderate hardness together with a low internal stress. The high hardness of the deposited film originates from the crosslinking of the sp2 clusters by the sp3 sites. The presence of the graphite-like clusters in the film structure may be responsible for the low internal stress. What is more important is that the resulting films show excellent tribological properties with high load capacity and excellent wear resistance in humid atmospheres. The relationship between the microstructure determined by the deposition condition and the film characteristic is discussed in detail.
文摘Diamond-like carbon (DLC) films are deposited by the Hall ion source assisted by the mid-frequency unbalanced magnetron sputtering technique. The effects of the substrate voltage bias, the substrate temperature, the Hall discharging current and the argon/nitrogen ratio on the DLC film's performance were studied. The experimental results show that the film's surface roughness, the hardness and the Young's modulus increase firstly and then decrease with the bias voltage incrementally increases. Also when the substrate temperature rises, the surface roughness of the film varies slightly, but its hardness and Young's modulus firstly increase followed by a sharp decrease when the temperature surpassing 120 ℃. With the Hall discharging current incrementally rising, the hardness and Young's modulus of the film decrease and the surface roughness of the film on 316L stainless steel firstly decreased and then remains constant.
文摘The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot. The possible reason for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating. For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film, a cluster model with a series of graphite (0001) basal surfaces has been presented, and the theoretical calculations have been performed to investigate work functions of graphite (0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.
文摘By pre-treating substrate with different methods and patterning the catalyst, selective and patterned growth of diamond and graphitic nano-structured carbon films have been realized through DC Plasma-Enhanced Hot Filament Chemical Vapor Deposition (PE-HFCVD). Through two-step processing in an HFCVD reactor, novel nano-structured composite diamond films containing a nanocrystalline diamond layer on the top of a nanocone diamond layer have been synthesized. Well-aligned carbon nanotubes, diamond and graphitic carbon nanocones with controllable alignment orientations have been synthesized by using PE-HFCVD. The orientation of the nanostructures can be controlled by adjusting the working pressure. In a Microwave Plasma Enhanced Chemical Vapor Deposition (MW-PECVD) reactor, high-quality diamond films have been synthesized at low temperatures (310℃-550℃) without adding oxygen or halogen gas in a newly developed processing technique. In this process, carbon source originates from graphite etching, instead of hydrocarbon. The lowest growth temperature for the growth of nanocrystalline diamond films with a reasonable growth rate without addition of oxygen or halogen is 260℃.
基金This research was supported by the Aeronautics Science Foundation of China (No.98G51124).
文摘Diamond-like carbon (DLC) films have been deposited on glass substrates usingradio-frequency (rf) plasma deposition method. Gamma -ray, ultraviolet (UV) ray were used toirradiate the DLC films. Raman spectroscopy and infrared (IR) spectroscopy were use to characterizethe changing characteristics of SP^3 C-H bond and hydrogen content in the films due to theirradiations. The results show that, the damage degrees induced by the UV ray on the SP^3 C-H bondsare much stronger than that by the gamma -ray. When the irradiation dose of gamma -ray reaches 1 OX10^4 Gy, the SP^3 C-H bond reduces about 50 percent in number. The square electrical resistance ofthe films is reduced due to the irradiation of UV ray and this is caused by severe oxidation of thefilms. By using the results on optical gap of the films and the fully constrained network theory,the hydrogen content in the as-deposited films is estimated to be l0-25at. percent.
基金Natural Science Foundation of Anhui Province(No.03044702)National Natural Science Foundation of China(No.19835030)
文摘In order to study the influence of nitrogen incorporated into amorphous carbon films, nitrogenated amorphous carbon films have been deposited by using surface wave plasma chemical vapor deposition under various ratios of N2/CH4 gas flow. Optical emission spectroscopy has been used to monitor plasma features near the deposition zone. After deposition, the samples are checked by Raman spectroscopy and x-ray photo spectroscopy (XPS). Optical emission intensities of CH and N atom in the plasma are found to be enhanced with the increase in the N2/CH4 gas flow ratio, and then reach their maximums when the N2/CH4 gas flow ratio is 5%. A contrary variation is found in Raman spectra of deposited films. The intensity ratio of the D band to the G band (Id/Ig) and the peak positions of the G and D bands all reach their minimums when the N2/CH4 gas flow ratio is 5%. These show that the structure of amorphous carbon films has been significantly modified by introduction of nitrogen.
基金The project supported by the National Nature Science Foundation of China (No. 10175048)
文摘Fluorinated amorphous carbon films (a-C:F) were prepared at different temperatures using a microwave electron cyclotron resonance chemical vapor deposition (ECR-CVD) reactor with CHF3 and C2H2 as source gases. Films were annealed at 500℃ in vacuum ambience in order to investigate the relationship of their thermal stability, optical and electrical properties with deposition temperature. Results indicate that the films deposited at high temperature have a less CFX bonding and a more cross-linking structure thus a better thermal stability. They also have a lower bandgap, higher dielectric constant and higher leakage current.
基金Project supported by National Natural Science Foundation of China (Grant No 10405005).
文摘Diamond-like carbon (DLC) films have been deposited using three different techniques: (a) electron cyclotron resonance——plasma source ion implantation, (b) low-pressure dielectric barrier discharge, (c) filtered——pulsed cathodic arc discharge, The surface and mechanical properties of these films are compared using atomic force microscopebased tests. The experimental results show that hydrogenated DLC films are covered with soft surface layers enriched with hydrogen and sp^3 hybridized carbon while the soft surface layers of tetrahedral amorphous carbon (ta-C) films have graphite-like structure, The formation of soft surface layers can be associated with the surface diffusion and growth induced by the low-energy deposition process. For typical CVD methods, the atomic hydrogen in the plasmas can contribute to the formation of hydrogen and sp^3 hybridized carbon enriched surface layers, The high-energy ion implantation causes the rearrangement of atoms beneath the surface layer and leads to an increase in film density. The ta-C films can be deposited using the medium energy carbon ions in the highly-ionized plasma.
文摘Direct current metal filtered cathodic vacuum arc (FCVA) and acetylene gas (C2H2) were wielded to synthesize Ti-containing amorphous carbon films on Si (100). The influence of substrate bias voltage and acetylene gas on the microstructure and mechanical properties of the films were investigated. The results show that the phase of TiC in the (111) preferential crystallographic orientation exists in the film,and the main existing pattern of carbon is sp2. With increasing the acetylene flow rate,the contents of Ti and TiC phase of the film gradually reduce; however,the thickness of the film increases. When the substrate bias voltage reaches -600 V,the internal stress of the film reaches 1.6 GPa. The micro-hardness and elastic modulus of the film can reach 33.9 and 237.6 GPa,respectively,and the friction coefficient of the film is 0.25.
基金supported by the National Natural Science Foundation of China(Grant Nos.51272237,51272231,and 51010002)the China Postdoctoral Science Foundation(Grant Nos.2012M520063,2013T60587,and Bsh1201016)
文摘Nitrogen-doped diamond-like carbon (DLC:N) films prepared by the filtered cathodic vacuum arc technology are functionalized with various chemical molecules including dopamine (DA), 3-Aminobenzeneboronic acid (APBA), and adenosine triphosphate (ATP), and the impacts of surface functionalities on the surface morphologies, compositions, microstructures, and cell compatibility of the DLC:N films are systematically investigated. We demonstrate that the surface groups of DLC:N have a significant effect on the surface and structural properties of the film. The activity of PC12 cells depends on the particular type of surface functional groups of DLC:N films regardless of surface roughness and wettability. Our research offers a novel way for designing functionalized carbon films as tailorable substrates for biosensors and biomedical engineering applications.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11164031)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of China (Grant No. (2009)1341)
文摘The field emission (FE) characteristics of nano-structured carbon films (NSCFs) are investigated. The saturation behaviour of the field emission current density found at high electric field E cannot be reasonably explained by the traditional Fowler-Nordheim (F-N) theory. A three-region E model and the curve-fitting method are utilized for discussing the FE characteristics of NSCFs. In the low, high, and middle E regions, the FE mechanism is reasonably explained by a modified F-N model, a corrected space-charge-limited-current (SCLC) model and the joint model of F N and SCLC mechanism, respectively. Moreover, the measured FE data accord well with the results from our corrected theoretical model.