Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batter...Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batteries(LIBs).Hereon,a facile and inexpensive technology to prepare silicon/carbon composite with yolk/double-shells structure is proposed,in which the double buffering carbon shells are fabricated.The silicon/carbon nanoparticles with core-shell structure are encapsulated by SiO_(2)and external carbon layer,and it shows the yolk/double-shells structure via etching the SiO_(2)sacrificial layer.The multiply shells structure not only significantly improves the electrical conductivity of composite,but also effectively prevents the exposure of Si particles from the electrolyte composition.Meanwhile,the yolk/double-shells structure can provide enough space to accommodate the volume change of the electrode during charge/discharge process and avoid the pulverization of Si particles.Moreover,the as-prepared YDS-Si/C shows excellent performance as anode of LIBs,the reversible capacity is as high as 1066 mA h g^(-1) at the current density of 0.5 A g^(-1) after 200 cycles.At the same time,the YDS-Si/C has high capacity retention and good cyclic stability.Therefore,the unique architecture design of yolk/double-shells for Si/C composite provides an instructive exploration for the development of next generation anode materials of LIBs with high electrochemical performances and structural stability.展开更多
The carbon layers on implanted steel surface have been studied by means of Auger spectra. It is shown that the thickness of the carbon layer is proportional to the dose of implanted ions. By comparison with the result...The carbon layers on implanted steel surface have been studied by means of Auger spectra. It is shown that the thickness of the carbon layer is proportional to the dose of implanted ions. By comparison with the results of friction and wear tests, the friction coefficient is smaller than 0.20 at the first part of the friction coefficient curve. It is considered that the graphitic carbon layer on the top of steel is helpful to reducing the surface friction coefficient of steel.展开更多
Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and ...Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and enclosing of electrocatalysts with carbonaceous materials were both used to accelerate the catalytic efficiency of cobalt selenide for water splitting.The nitrogen-doped carbon(NC)layer improves the reaction kinetics by efficient charge transfer.The alloying of metal into composited electrocatalysts can modify the electronic properties of host materials,thereby tuning the adsorption behavior of intermediate and improving the electrocatalytic activity.As expected,Nyquist plots reveal that the charge-transfer resistance(Rct)of nickel cobalt selenide encapsulated into nitrogen-doped carbon layer(CoNiSe/NC-3,Co:Ni=1:1)are just 5 and 9 for HER and OER,respectively,which are much lower than those of CoSe/NC-1(Co:Ni=1:0)(81 and 138)and CoNiSe/NC-3 without NC(CoNiSe-3)(54 and 25).With the high charge transfer and porous structure,CoNiSe/NC-3 shows good performance for both HER and OER.When current density reaches 10 m A cm-2,only 100 and 270 mV overpotentials are required for HER and OER,respectively.With the potential of 1.65 V,full water splitting also can be catalyzed by Co Ni Se/NC-3 with current density of 20 m A cm-2,suggesting that CoNiSe/NC-3 could be used as replacement for noble metal electrocatalysts.展开更多
Sodium-ion batteries(SIBs)are an attractive battery system because of similar characteristics to lithium-ion batteries(LIBs)and large Na element abundance.Nevertheless,exploring stable,high-capacity and high-rate anod...Sodium-ion batteries(SIBs)are an attractive battery system because of similar characteristics to lithium-ion batteries(LIBs)and large Na element abundance.Nevertheless,exploring stable,high-capacity and high-rate anode materials for SIBs is still challenging now.Herein,diethylenetriamine(DETA)molecular template derived ultrathin N-doped carbon(NC)layer decorated CoSe_(2)nanobelts(CoSe_(2)/NC)are prepared by solvothermal reaction followed by calcination process.The CoSe_(2)/NC exhibits large potential as an anode for SIBs.Experiments and theoretical calculations reveal that the in situ formed conductive ultrathin NC layer can not only relieve the volume change of CoSe_(2)but also accelerate electron and ion transport.In addition,the nanobelt structure of CoSe_(2)/NC with abundant exposed active sites can obviously accelerate the electrochemical kinetics.Under the synergistic effect of special nanobelt structure and NC layer,the rate as well as cycling performances of CoSe_(2)/NC are obviously improved.A superior capacity retention of 94.8%is achieved at 2 A·g^(-1)after 2000 cycles.When using Na3V2(PO4)3 cathodes,the pouch full batteries can work steadily at 0.5 C,verifying the application ability.CoSe_(2)/NC anodes also exhibit impressive performances in LIBs and potassium-ion batteries(PIBs).展开更多
Lithium-ion capacitors(LICs) of achieving high power and energy density have garnered significant attention. However, the kinetics unbalance between anode and cathode can impede the application of LICs. Vanadium nitri...Lithium-ion capacitors(LICs) of achieving high power and energy density have garnered significant attention. However, the kinetics unbalance between anode and cathode can impede the application of LICs. Vanadium nitride(VN) with a high theoretical specific capacity(~ 1200 m Ah·g^(-1)) is a better pseudocapacitive anode to match the response of cathode in LICs. However, the insertion/extraction of Li-ions in VN's operation results in significant volume expansion. Herein, the VN/N-r GO-5composite that three-dimentional(3D) dicyandiamidederived-carbon(DDC) tightly wrapped VN quantum dots(VN QDTs) on two-dimentional(2D) reduced graphene oxid(r GO) was prepared by a facile strategy. The VN QDTs can reduce ion diffusion length and improve charge transfer kinetics. The 2D r GO as a template provides support for nanoparticle dispersion and improves electrical conductivity. The 3D DDC tightly encapsulated with VN QDTs mitigates agglomeration of VN particles as well as volume expansion. Correspondingly, the LICs with VN/Nr GO-5 composite as anode and activated carbon(AC) as cathode were fabricated, which exhibits a high energy density and power density. Such strategy provides a perspective for improving the electrochemical properties of LIC anode materials by suppressing volume expansion and enhancing conductivity.展开更多
In this work, a series of Pt nanocrystallines(Pt NCs) supported on TiO2 substrate with controlled thickness of carbon layers(C-Pt/TiO2) were synthesized. Well-dispersed Pt NCs were facilely synthesized at room tem...In this work, a series of Pt nanocrystallines(Pt NCs) supported on TiO2 substrate with controlled thickness of carbon layers(C-Pt/TiO2) were synthesized. Well-dispersed Pt NCs were facilely synthesized at room temperature by a photo-reduction process in lytropic liquid crystal(LCs). Surface tuning of the carbon layers on Pt/TiO2 catalysts was achieved by varying the calcination atmospheres(in argon, air, and oxygen) and characterized by XPS and HRTEM. The influence of the coated carbon layers on the catalytic activity of catalysts is investigated by CO oxidation reaction which presented the following ranks: C-Pt/TiO2-O2〉 C-Pt/TiO2-Air 〉 C-Pt/TiO2-Ar. It is found that the carbon layer coating can stabilize the Pt NCs and enable them anti-sintering at high temperature. This finding provides new insight into understanding the C-Pt/TiO2 ternary system for tuning their catalytic performance.展开更多
Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge produc...Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge products. Herein we propose a rational material design strategy for sulfide-based materials to address these problems. Taking nickel sulfide (NiSx) as an example, we demonstrated that its electrochemical performance can be dramatically improved by confining the NiSx nanoparticles in a percolating conductive carbon nanotube network, and stabilizing them with an ultrathin carbon coating layer. The carbon layer serves as a physical barrier to alleviate the effects of both the volume change and dissolution of active materials. The hybrid material exhibited a large reversible specific capacity of 〉500 mAh/g and excellent cycling stability over 200 cycles. Given the traditionally problematic nature of NiSx as a battery anode material, we believe that the observed high performance reported here reflects the effectiveness of our material design strategy.展开更多
An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the ...An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).展开更多
The increasing importance of the ecologically minded production of building materials makes it necessary to develop reasonable alternatives to the CO2-intense production of ordinary Portland cement (OPC). The develo...The increasing importance of the ecologically minded production of building materials makes it necessary to develop reasonable alternatives to the CO2-intense production of ordinary Portland cement (OPC). The development of new or modified concrete is an important part of existing strategies to improve performance and minimize life-cycle costs. Therefore, we investigated carbonation resistance properties of sulphoaluminate cement (SAC) concrete incorporating layered double hydroxides (LDHs). X-ray diffraction (XRD) and IR-spectroscopy were employed to characterize the component and structural changes of LDHs and cement paste before and after carbonation test. Carbonation resistance of concrete was experimentally evaluated. Finally, carbonation of Portland cement and SAC concrete was compared. The experimental results show that carbonation depth decreases remarkably with the addition of LDHs, especially the calcinated LDHs. Carbonation depth of SAC concrete is smaller than that of PC concrete regardless of curing time.展开更多
Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can cont...Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally.展开更多
Converting sunlight directly to fuels and chemicals is a great latent capacity for storing renewable energy.Due to the advantages of large surface area,short diffusion paths for electrons,and more exposed active sites...Converting sunlight directly to fuels and chemicals is a great latent capacity for storing renewable energy.Due to the advantages of large surface area,short diffusion paths for electrons,and more exposed active sites,few‐layer carbon nitride(FLCN)materials present great potential for production of solar fuels and chemicals and set off a new wave of research in the last few years.Herein,the recent progress in synthesis and regulation of FLCN‐based photocatalysts,and their applications in the conversion of sunlight into fuels and chemicals,is summarized.More importantly,the regulation strategies from chemical modification to microstructure control toward the production of solar fuels and chemicals has been deeply analyzed,aiming to inspire critical thinking about the effective approaches for photocatalyst modification rather than developing new materials.At the end,the key scientific challenges and some future trend of FLCN‐based materials as advanced photocatalysts are also discussed.展开更多
The layer-by-layer(LBL) self assembly of anionic and cationic multi-walled carbon nanotubes(MWNTs) through electrostatic interaction has been carried out to fabricate all-MWNT multilayer films.The alternate uniform as...The layer-by-layer(LBL) self assembly of anionic and cationic multi-walled carbon nanotubes(MWNTs) through electrostatic interaction has been carried out to fabricate all-MWNT multilayer films.The alternate uniform assembly of anionic and cationic MWNTs was investigated by UV-vis spectroscopy.Scanning electron microscopy(SEM) images displayed the growth of the MWNT films.展开更多
The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer...The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors (EDLCs) with organic electrolyte was studied. The re-activation of AC results in the increases in both specific capacitance and high rate capability of EDLCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65 F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly. The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.展开更多
The electrochemical storage of energy in a special kind of active carbon materials used as capacitor electrodes is considered. Petroleum coke was used for preparation of carbons with different porosities by KOH and va...The electrochemical storage of energy in a special kind of active carbon materials used as capacitor electrodes is considered. Petroleum coke was used for preparation of carbons with different porosities by KOH and vapor etching with catalysis of FeCI3 in turn. Carbon electrodes were fabricated and used as electrodes of double layer capacitors. Nitrogen adsorption was used to characterize the porous structure of the carbons. The electrochemical performance of the capacitors in 6 mol/L KOH was investigated with constant current charge and discharge experiments. A specific capacitance larger than 160 F/g was achieved with an electrode composed of 75% active carbon with a specific surface area of 1180 m2/g and 20% graphite as conductive agent. Evaluation of capacitor performance was conducted by different techniques, e.g. voltammetry and impedance spectroscopy. Characteristics of the capacitor were also discussed. A hybrid power source consisting of nickel- hydrogen and double layer capacitor was demonstrated by powering successfully a simulated power load encountered in communication equipment.展开更多
Activated carbons(ACs) with a wide range of surface areas were made from petroleum coke by means of KOH activation. The electrochemical characterization was carried out for several activated carbons used as polarizabl...Activated carbons(ACs) with a wide range of surface areas were made from petroleum coke by means of KOH activation. The electrochemical characterization was carried out for several activated carbons used as polarizable electrodes of electric double-layer capacitors(EDLCs) in an aqueous electrolytic solution. The porous structures and electrochemical double-layer capacitance of the activated carbons were investigated by virtue of nitrogen gas adsorption and constant current cycling(CCC) methods. The relationship among the surface area, pore volume of the activated carbons and specific double-layer capacitance was discussed. It was found that the specific capacitance of ACs increased linearly with the increase of surface area. The presence of mesopores in the activated carbons with very high surface area(>2000 m\+2/g) was not very effective for them to be used as EDLCs. The influence of chemical characteristics of the activated carbons on the double layer formation could be considered to be negligible.展开更多
In this study electric double layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented an...In this study electric double layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate of I =0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω·cm 2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.展开更多
Multi-walled carbon nanotube multilayers were modified onto a newly proposed gold hair microelectrode via a simple layer-bylayer assembling method. The resulting electrode showed a sensitive oxidation response to estr...Multi-walled carbon nanotube multilayers were modified onto a newly proposed gold hair microelectrode via a simple layer-bylayer assembling method. The resulting electrode showed a sensitive oxidation response to estradiol with detection limit as low as 1.0 × 10^-8 mol/L, foreseeing a promising approach to the fabrication of high-sensitive microsensors.展开更多
We develop a general approach to the fabrication of films with unidirectional grooves, such as silicon nitride, silicon dioxide and aluminium oxide, in which the surface is not required to be treated. Super-aligned ca...We develop a general approach to the fabrication of films with unidirectional grooves, such as silicon nitride, silicon dioxide and aluminium oxide, in which the surface is not required to be treated. Super-aligned carbon nanotube (SACNT) film may be used as a template and as sacrificial layer, which is subsequently removed by heating in an atmosphere of air. The unidirectional morphology of the SACNT film turns into a desired film, which is found to possess the ability to align liquid crystal molecules. This approach also features high efficiency, low cost and easy scaling-up for mass production.展开更多
In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional ...In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional supercritical drying. By varying the R/C ratio (molar ratio of resorcinol to catalyst), mesoporous carbon aerogels with high specific surface area were prepared successfully and further investigated as electrode materials for electric double-layer capacitors (EDLCs). The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM. The electrochemical performances of carbon aerogels were investigated by impedance spectroscopy, galvanostatic charge/discharge and cyclic voltammetry methods. The results show that BET surface area and specific capacitance increase with R/C ratio, the maximum values of 727 m2·g-1 and 132 F·g-1 are achieved at R/C ratio will of 300. Increasing R/C ratio increase the average pore size of carbon aerogel electrode, which has improved the rate capability. Furthermore, EDLC with carbon aerogel electrodes has an excellent stability at large discharge current and long cycle life.展开更多
We investigate the dielectric properties of multi-walled carbon nanotubes(MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 10 ^2-10^ 7 Hz.MWCNTs and graphite...We investigate the dielectric properties of multi-walled carbon nanotubes(MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 10 ^2-10^ 7 Hz.MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers.Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold.Variations of dielectric properties of the composites are in agreement with the percolation theory.All the percolation phenomena are determined by hopping and migrating electrons,which are attributed to the special electronic transport mechanism of the fillers in the composites.However,the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites,while in the graphite/SiO2 composites,there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%.The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism,especially the network effect of MWCNTs in the composites.The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.展开更多
基金the National Natural Science Foundation of China(No.21703191)Key Project of Strategic New Industry of Hunan Province(No.2016GK4005 and No.2016GK4030)Research Innovation Project for Graduate students of Hunan Province(No.CX2017B302)。
文摘Among the many strategies to fabricate the silicon/carbon composite,yolk/double-shells structure can be regarded as an effective strategy to overcome the intrinsic defects of Si-based anode materials for Li-ion batteries(LIBs).Hereon,a facile and inexpensive technology to prepare silicon/carbon composite with yolk/double-shells structure is proposed,in which the double buffering carbon shells are fabricated.The silicon/carbon nanoparticles with core-shell structure are encapsulated by SiO_(2)and external carbon layer,and it shows the yolk/double-shells structure via etching the SiO_(2)sacrificial layer.The multiply shells structure not only significantly improves the electrical conductivity of composite,but also effectively prevents the exposure of Si particles from the electrolyte composition.Meanwhile,the yolk/double-shells structure can provide enough space to accommodate the volume change of the electrode during charge/discharge process and avoid the pulverization of Si particles.Moreover,the as-prepared YDS-Si/C shows excellent performance as anode of LIBs,the reversible capacity is as high as 1066 mA h g^(-1) at the current density of 0.5 A g^(-1) after 200 cycles.At the same time,the YDS-Si/C has high capacity retention and good cyclic stability.Therefore,the unique architecture design of yolk/double-shells for Si/C composite provides an instructive exploration for the development of next generation anode materials of LIBs with high electrochemical performances and structural stability.
文摘The carbon layers on implanted steel surface have been studied by means of Auger spectra. It is shown that the thickness of the carbon layer is proportional to the dose of implanted ions. By comparison with the results of friction and wear tests, the friction coefficient is smaller than 0.20 at the first part of the friction coefficient curve. It is considered that the graphitic carbon layer on the top of steel is helpful to reducing the surface friction coefficient of steel.
基金financial support by the National Natural Science Foundation of China (21605015)the Development Project of Science and Technology of Jilin Province (20170101176JC)+3 种基金the Fundamental Research Funds for the Central Universities (2412017BJ003)the Recruitment Program of Global Youth Experts, the Jilin Provincial Department of Educationthe start-up funds from Northeast Normal Universitythe service support from Analysis and Testing Center of Northeast Normal University
文摘Generally,the catalytic overpotentials of hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)are unavoidable because of the low charge transfer.In this work,two strategies of alloying of Co with Ni and enclosing of electrocatalysts with carbonaceous materials were both used to accelerate the catalytic efficiency of cobalt selenide for water splitting.The nitrogen-doped carbon(NC)layer improves the reaction kinetics by efficient charge transfer.The alloying of metal into composited electrocatalysts can modify the electronic properties of host materials,thereby tuning the adsorption behavior of intermediate and improving the electrocatalytic activity.As expected,Nyquist plots reveal that the charge-transfer resistance(Rct)of nickel cobalt selenide encapsulated into nitrogen-doped carbon layer(CoNiSe/NC-3,Co:Ni=1:1)are just 5 and 9 for HER and OER,respectively,which are much lower than those of CoSe/NC-1(Co:Ni=1:0)(81 and 138)and CoNiSe/NC-3 without NC(CoNiSe-3)(54 and 25).With the high charge transfer and porous structure,CoNiSe/NC-3 shows good performance for both HER and OER.When current density reaches 10 m A cm-2,only 100 and 270 mV overpotentials are required for HER and OER,respectively.With the potential of 1.65 V,full water splitting also can be catalyzed by Co Ni Se/NC-3 with current density of 20 m A cm-2,suggesting that CoNiSe/NC-3 could be used as replacement for noble metal electrocatalysts.
基金supported by the National Natural Science Foundation of China(Nos.U21A2077 and 51972198)the State Key Program of National Natural Science of China(No.62133007)+3 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2021ZD05,ZR2020JQ19,ZR2022JQ08 and ZR2023QB169)Taishan Scholars Program of Shandong Province(Nos.tsqn201812002,ts20190908 and tsqn202211028)Shenzhen Fundamental Research Program(No.JCYJ20190807093405503)China Postdoctoral Science Foundation(No.2022M721913).
文摘Sodium-ion batteries(SIBs)are an attractive battery system because of similar characteristics to lithium-ion batteries(LIBs)and large Na element abundance.Nevertheless,exploring stable,high-capacity and high-rate anode materials for SIBs is still challenging now.Herein,diethylenetriamine(DETA)molecular template derived ultrathin N-doped carbon(NC)layer decorated CoSe_(2)nanobelts(CoSe_(2)/NC)are prepared by solvothermal reaction followed by calcination process.The CoSe_(2)/NC exhibits large potential as an anode for SIBs.Experiments and theoretical calculations reveal that the in situ formed conductive ultrathin NC layer can not only relieve the volume change of CoSe_(2)but also accelerate electron and ion transport.In addition,the nanobelt structure of CoSe_(2)/NC with abundant exposed active sites can obviously accelerate the electrochemical kinetics.Under the synergistic effect of special nanobelt structure and NC layer,the rate as well as cycling performances of CoSe_(2)/NC are obviously improved.A superior capacity retention of 94.8%is achieved at 2 A·g^(-1)after 2000 cycles.When using Na3V2(PO4)3 cathodes,the pouch full batteries can work steadily at 0.5 C,verifying the application ability.CoSe_(2)/NC anodes also exhibit impressive performances in LIBs and potassium-ion batteries(PIBs).
基金financially supported by the National Natural Science Foundation of China (Nos.22005167 and 21905152)Shandong Provincial Natural Science Foundation of China (Nos.ZR2020QB125, ZR2020MB045 and ZR2022QE003)+2 种基金China Postdoctoral Science Foundation (Nos.2021M693256, 2021T140687 and 2022M713249)Qingdao Postdoctoral Applied Research Project, Taishan Scholar Project of Shandong Province of China (No.tsqn202211160)the Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province。
文摘Lithium-ion capacitors(LICs) of achieving high power and energy density have garnered significant attention. However, the kinetics unbalance between anode and cathode can impede the application of LICs. Vanadium nitride(VN) with a high theoretical specific capacity(~ 1200 m Ah·g^(-1)) is a better pseudocapacitive anode to match the response of cathode in LICs. However, the insertion/extraction of Li-ions in VN's operation results in significant volume expansion. Herein, the VN/N-r GO-5composite that three-dimentional(3D) dicyandiamidederived-carbon(DDC) tightly wrapped VN quantum dots(VN QDTs) on two-dimentional(2D) reduced graphene oxid(r GO) was prepared by a facile strategy. The VN QDTs can reduce ion diffusion length and improve charge transfer kinetics. The 2D r GO as a template provides support for nanoparticle dispersion and improves electrical conductivity. The 3D DDC tightly encapsulated with VN QDTs mitigates agglomeration of VN particles as well as volume expansion. Correspondingly, the LICs with VN/Nr GO-5 composite as anode and activated carbon(AC) as cathode were fabricated, which exhibits a high energy density and power density. Such strategy provides a perspective for improving the electrochemical properties of LIC anode materials by suppressing volume expansion and enhancing conductivity.
基金financially supported by the National Key Technology R&D Program of China (No. 2017YFB0310704)the National Natural Science Foundation of China (Nos. 21773112, 21173119 and 21303083)+2 种基金Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 17KJB150001)the Natural Science Foundation of Jiangsu Province (No. BK20130563)the Fundamental Research Funds for the Central Universities
文摘In this work, a series of Pt nanocrystallines(Pt NCs) supported on TiO2 substrate with controlled thickness of carbon layers(C-Pt/TiO2) were synthesized. Well-dispersed Pt NCs were facilely synthesized at room temperature by a photo-reduction process in lytropic liquid crystal(LCs). Surface tuning of the carbon layers on Pt/TiO2 catalysts was achieved by varying the calcination atmospheres(in argon, air, and oxygen) and characterized by XPS and HRTEM. The influence of the coated carbon layers on the catalytic activity of catalysts is investigated by CO oxidation reaction which presented the following ranks: C-Pt/TiO2-O2〉 C-Pt/TiO2-Air 〉 C-Pt/TiO2-Ar. It is found that the carbon layer coating can stabilize the Pt NCs and enable them anti-sintering at high temperature. This finding provides new insight into understanding the C-Pt/TiO2 ternary system for tuning their catalytic performance.
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51472173 and 51522208), the Natural Science Foundation of Jiangsu Province (Nos. BK20140302 and SBK2015010320), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge products. Herein we propose a rational material design strategy for sulfide-based materials to address these problems. Taking nickel sulfide (NiSx) as an example, we demonstrated that its electrochemical performance can be dramatically improved by confining the NiSx nanoparticles in a percolating conductive carbon nanotube network, and stabilizing them with an ultrathin carbon coating layer. The carbon layer serves as a physical barrier to alleviate the effects of both the volume change and dissolution of active materials. The hybrid material exhibited a large reversible specific capacity of 〉500 mAh/g and excellent cycling stability over 200 cycles. Given the traditionally problematic nature of NiSx as a battery anode material, we believe that the observed high performance reported here reflects the effectiveness of our material design strategy.
基金supported by the Royal Academy of Engineering,United Kingdom
文摘An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).
基金Funded by the National Natural Science Foundation of China(No.NNSF-51272194)
文摘The increasing importance of the ecologically minded production of building materials makes it necessary to develop reasonable alternatives to the CO2-intense production of ordinary Portland cement (OPC). The development of new or modified concrete is an important part of existing strategies to improve performance and minimize life-cycle costs. Therefore, we investigated carbonation resistance properties of sulphoaluminate cement (SAC) concrete incorporating layered double hydroxides (LDHs). X-ray diffraction (XRD) and IR-spectroscopy were employed to characterize the component and structural changes of LDHs and cement paste before and after carbonation test. Carbonation resistance of concrete was experimentally evaluated. Finally, carbonation of Portland cement and SAC concrete was compared. The experimental results show that carbonation depth decreases remarkably with the addition of LDHs, especially the calcinated LDHs. Carbonation depth of SAC concrete is smaller than that of PC concrete regardless of curing time.
基金Funded by the National Natural Science Foundation of China(No.50878169)the Project of State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)(No.G201407)
文摘Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally.
文摘Converting sunlight directly to fuels and chemicals is a great latent capacity for storing renewable energy.Due to the advantages of large surface area,short diffusion paths for electrons,and more exposed active sites,few‐layer carbon nitride(FLCN)materials present great potential for production of solar fuels and chemicals and set off a new wave of research in the last few years.Herein,the recent progress in synthesis and regulation of FLCN‐based photocatalysts,and their applications in the conversion of sunlight into fuels and chemicals,is summarized.More importantly,the regulation strategies from chemical modification to microstructure control toward the production of solar fuels and chemicals has been deeply analyzed,aiming to inspire critical thinking about the effective approaches for photocatalyst modification rather than developing new materials.At the end,the key scientific challenges and some future trend of FLCN‐based materials as advanced photocatalysts are also discussed.
基金supported by the Starting Foundation of Renmin University of China and the National Natural Science Foundation of China(No.20703066).
文摘The layer-by-layer(LBL) self assembly of anionic and cationic multi-walled carbon nanotubes(MWNTs) through electrostatic interaction has been carried out to fabricate all-MWNT multilayer films.The alternate uniform assembly of anionic and cationic MWNTs was investigated by UV-vis spectroscopy.Scanning electron microscopy(SEM) images displayed the growth of the MWNT films.
基金The authors are grateful for the National Natural Science Foundation of China (20003005) the Natural Science Foundation of Jiangsu Province (BQ2000009).
文摘The cheap commercial activated carbon (AC) was improved through the secondary activation under steam in the presence of FeCl2 catalyst in the temperature range of 800-950℃ and its application in electric double layer capacitors (EDLCs) with organic electrolyte was studied. The re-activation of AC results in the increases in both specific capacitance and high rate capability of EDLCs. For AC treated under optimized conditions, its discharge specific capacitance increases up to 55.65 F/g, an increase of about 33% as compared to the original AC, and the high rate capability was increased significantly. The good performances of EDLC with improved AC were correlated to the increasing mesoporous ratio.
基金The authors greatly acknowledge financial support from the National Natural Science Foundation of China(No.59807001).
文摘The electrochemical storage of energy in a special kind of active carbon materials used as capacitor electrodes is considered. Petroleum coke was used for preparation of carbons with different porosities by KOH and vapor etching with catalysis of FeCI3 in turn. Carbon electrodes were fabricated and used as electrodes of double layer capacitors. Nitrogen adsorption was used to characterize the porous structure of the carbons. The electrochemical performance of the capacitors in 6 mol/L KOH was investigated with constant current charge and discharge experiments. A specific capacitance larger than 160 F/g was achieved with an electrode composed of 75% active carbon with a specific surface area of 1180 m2/g and 20% graphite as conductive agent. Evaluation of capacitor performance was conducted by different techniques, e.g. voltammetry and impedance spectroscopy. Characteristics of the capacitor were also discussed. A hybrid power source consisting of nickel- hydrogen and double layer capacitor was demonstrated by powering successfully a simulated power load encountered in communication equipment.
基金Supported by the Young Teacher Scientific Research Foundation of BU CT(No.QN0 2 4 9) and National Natural ScienceFoundation(No.5 0 2 72 0 70 )
文摘Activated carbons(ACs) with a wide range of surface areas were made from petroleum coke by means of KOH activation. The electrochemical characterization was carried out for several activated carbons used as polarizable electrodes of electric double-layer capacitors(EDLCs) in an aqueous electrolytic solution. The porous structures and electrochemical double-layer capacitance of the activated carbons were investigated by virtue of nitrogen gas adsorption and constant current cycling(CCC) methods. The relationship among the surface area, pore volume of the activated carbons and specific double-layer capacitance was discussed. It was found that the specific capacitance of ACs increased linearly with the increase of surface area. The presence of mesopores in the activated carbons with very high surface area(>2000 m\+2/g) was not very effective for them to be used as EDLCs. The influence of chemical characteristics of the activated carbons on the double layer formation could be considered to be negligible.
文摘In this study electric double layer capacitors (EDLCs) based on activated carbon material and organic electrolyte (tetraethyl ammonium tetrafluoroborate) were explored. The fabrication method for EDLC is presented and the performance of EDLC was examined by using the cyclic voltammetry, constant current charging and discharging technique, electrochemical impedance spectroscopy measurements. Influence of various components and design parameters on the performance of the capacitors were preliminarily investigated. Up to now, EDLC based on carbon materials can deliver 20.7 W/kg at the discharge rate of I =0.3 mA, together with the energy density of 8.5 Wh/kg. Equivalent series resistance (ESR) is 0.716 Ω·cm 2. The specific power of the capacitor is low and further attempts to raise the power capability of the capacitors are necessary. Some considerations are put forward to further improve the performance of EDLC.
基金supported by National Natural Science Foundation of China(Nos.20805035 and 90817103)
文摘Multi-walled carbon nanotube multilayers were modified onto a newly proposed gold hair microelectrode via a simple layer-bylayer assembling method. The resulting electrode showed a sensitive oxidation response to estradiol with detection limit as low as 1.0 × 10^-8 mol/L, foreseeing a promising approach to the fabrication of high-sensitive microsensors.
基金Project supported by the National Basic Research Program of China(Grant Nos.2005CB623606 and 2007CB935301)the National Natural Science Foundation of China(Gang Nos.10704044,50825201,and 10721404)
文摘We develop a general approach to the fabrication of films with unidirectional grooves, such as silicon nitride, silicon dioxide and aluminium oxide, in which the surface is not required to be treated. Super-aligned carbon nanotube (SACNT) film may be used as a template and as sacrificial layer, which is subsequently removed by heating in an atmosphere of air. The unidirectional morphology of the SACNT film turns into a desired film, which is found to possess the ability to align liquid crystal molecules. This approach also features high efficiency, low cost and easy scaling-up for mass production.
文摘In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional supercritical drying. By varying the R/C ratio (molar ratio of resorcinol to catalyst), mesoporous carbon aerogels with high specific surface area were prepared successfully and further investigated as electrode materials for electric double-layer capacitors (EDLCs). The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM. The electrochemical performances of carbon aerogels were investigated by impedance spectroscopy, galvanostatic charge/discharge and cyclic voltammetry methods. The results show that BET surface area and specific capacitance increase with R/C ratio, the maximum values of 727 m2·g-1 and 132 F·g-1 are achieved at R/C ratio will of 300. Increasing R/C ratio increase the average pore size of carbon aerogel electrode, which has improved the rate capability. Furthermore, EDLC with carbon aerogel electrodes has an excellent stability at large discharge current and long cycle life.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50972014,51072024,and 51132002)
文摘We investigate the dielectric properties of multi-walled carbon nanotubes(MWCNTs) and graphite filling in SiO2 with the filling concentration of 2-20 wt.% in the frequency range of 10 ^2-10^ 7 Hz.MWCNTs and graphite have general electrical properties and percolation phenomena owing to their quasi-structure made up of graphene layers.Both permittivity ε and conductivity σ exhibit jumps around the percolation threshold.Variations of dielectric properties of the composites are in agreement with the percolation theory.All the percolation phenomena are determined by hopping and migrating electrons,which are attributed to the special electronic transport mechanism of the fillers in the composites.However,the twin-percolation phenomenon exists when the concentration of MWCNTs is between 5-10 wt.% and 15-20 wt.% in the MWCNTs/SiO2 composites,while in the graphite/SiO2 composites,there is only one percolation phenomenon in the graphite concentration of 10-15 wt.%.The unique twin-percolation phenomenon of MWCNTs/SiO2 is described and attributed to the electronic transfer mechanism,especially the network effect of MWCNTs in the composites.The network formation plays an essential role in determining the second percolation threshold of MWCNTs/SiO2.