期刊文献+
共找到1,050篇文章
< 1 2 53 >
每页显示 20 50 100
Carbon matrix effects on the micro-structure and performance of Pt nanowire cathode prepared by decal transfer method 被引量:4
1
作者 Zhaoxu Wei An He +1 位作者 Kaihua Su Sheng Sui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期213-218,共6页
High performance cathode for polymer electrolyte membrane fuel cell was prepared by depositing Pt nanowires in a carbon matrix coated on a substrate, and using decal transfer method to fabricate the membrane electrode... High performance cathode for polymer electrolyte membrane fuel cell was prepared by depositing Pt nanowires in a carbon matrix coated on a substrate, and using decal transfer method to fabricate the membrane electrode assembly. The effects of carbon and ionomer contents on the electrode micro-structure and fuel cell performance are investigated by physical characterization and single cell testing. The Pt nanowires are gradient distributed across the cathode thickness, and more Pt exists near the membrane. Both the carbon and ionomer contents can affect the Pt nanowires distribution and aggregation. In addition, the carbon loading dominates the transport distance of gas and proton, and the ionomer content affects the triple phase boundaries and porosity in the cathode. The optimal structure of Pt nanowire cathode is obtained at 0.10 mg·cm^-2 carbon loading and 10 wt% ionomer. 展开更多
关键词 Pt nanowire carbon matrix IONOMER decal transfer method polymer electrolyte membrane fuel cell
下载PDF
“All‐In‐One” integrated ultrathin SnS2@3D multichannel carbon matrix power high‐areal–capacity lithium battery anode 被引量:7
2
作者 Hongyi Xu Chengxin Peng +4 位作者 Yuhua Yan Fei Dong Hao Sun Junhe Yang Shiyou Zheng 《Carbon Energy》 CAS 2019年第2期276-288,共13页
Construction of a thickness‐independent electrode with high active material mass loading is crucial for the development of high energy rechargeable lithium battery.Herein,we fabricate an all‐in‐one integrated SnS2@... Construction of a thickness‐independent electrode with high active material mass loading is crucial for the development of high energy rechargeable lithium battery.Herein,we fabricate an all‐in‐one integrated SnS2@3D multichannel carbon matrix(SnS2@3DMCM)electrode with in‐situ growth of ultrathin SnS2 nanosheets inside the inner walls of three dimensional(3D)multichannels.The interconnected conductive carbon matrix derived from natural wood acts as an integrated porous current collector to avail the electrons transport and accommodate massive SnS2 nanosheets,while plenty of 3D aligned multichannels facilitate fast ions transport with electrode thickness‐independent even under high mass loading.As expected,the integrated SnS2@3DMCM electrode exhibits remarkable electrochemical lithium storage performance,such as exceptional high‐areal‐capacity of 6.4 mAh cm−2,high rate capability of 3 mAh cm−2 under current of 6.8 mAcm−2(10 C),and stable cycling performance of 6.8 mAcm−2 with a high mass loading of 7mg cm−2.The 3D integrated porous electrode constructing conveniently with the natural source paves new avenues towards future high‐performance lithium batteries. 展开更多
关键词 3D electrode carbon matrix high‐areal‐capacity Li‐ion battery metal sulfide
下载PDF
Carbon matrix/SiNWs heterogeneous block as improved reversible anodes material for lithium ion batteries
3
作者 Yao Wang Long Ren +6 位作者 Yundan Liu Xuejun Liu Kai Huang Xiaolin Wei Jun Li Xiang Qi Jianxin Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第1期105-110,共6页
A novel carbon matrix/silicon nanowires(SiNWs) heterogeneous block was successfully produced by dispersing SiNWs into templated carbon matrix via a modified evaporation induced self-assembly method. The heterogeneous ... A novel carbon matrix/silicon nanowires(SiNWs) heterogeneous block was successfully produced by dispersing SiNWs into templated carbon matrix via a modified evaporation induced self-assembly method. The heterogeneous block was determined by X-ray diffraction, Raman spectra and scanning electron microscopy. As an anode material for lithium batteries, the block was investigated by cyclic voltammograms(CV), charge/discharge tests, galvanostatic cycling performance and A. C. impedance spectroscopy. We show that the SiNWs disperse into the framework, and are nicely wrapped by the carbon matrix. The heterogeneous block exhibits superior electrochemical reversibility with a high specific capacity of 529.3 mAh/g in comparison with bare SiNWs anode with merely about 52.6 mAh/g capacity retention. The block presents excellent cycle stability and capacity retention which can be attributed to the improvement of conductivity by the existence of carbon matrix and the enhancement of ability to relieve the large volume expansion of SiNWs during the lithium insertion/extraction cycle. The results indicate that the as-prepared carbon matrix/SiNWs heterogeneous block can be an attractive and potential anode material for lithium-ion battery applications. 展开更多
关键词 SiNWs carbon matrix heterogeneous block lithium-ion battery
下载PDF
MG63 Osteoblast-like Cells Growth Behaviour on Carbon/Carbon Composites with Different Carbon Matrixes 被引量:1
4
作者 ZHANG Leilei LI Hejun LI Kezhi ZHAO Xueni WU Heng CAO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期303-308,共6页
During the process that implant materials are used for bone replacement,the cell responses to implant materials determine the long-term stability of bone replacement.The microstructure of implant materials is consider... During the process that implant materials are used for bone replacement,the cell responses to implant materials determine the long-term stability of bone replacement.The microstructure of implant materials is considered as a critical factor that influences the cell responses.Carbon/Carbon composites(C/C composites) are novel implant materials,but there are few reports on the effect of their microstructure,especially the carbon matrixes and holes,on cell behavior.In this paper,C/C composites with different carbon matrixes are prepared by chemical vapor infiltration and pressure impregnation carbonization technique,respectively.The structure of holes is analyzed.The cell responses to C/C composites with different carbon matrixes are evaluated with MG63 osteoblast-like cells.The morphologies of MG63 osteoblast-like cells on the surface of C/C composites,especially in the holes are assessed by scanning electron microscope,and cell proliferation behavior is evaluated by 3-[4,5-dimethylthiozol-2-yl]-2,5-diphenyltetrazolium bromide(MTT) assay. The results show that MG63 osteoblast-like cells have a lamellar morphology with similar sizes and spreading areas as well as the same proliferation behaviors for C/C composites with different carbon matrixes.Carbon matrix shows unapparent influence on the cell growth behavior.Besides,MG63 osteoblast-like cells have various interactions with the holes of C/C composites.The cells stride over the holes with 6~8μm in size,and connect with each other or grow along the curvature wall of the holes with a size of 30-40μm;the cells present three-dimensional morphologies inside the holes and display circular shapes along the ridge of the holes.Diverse cell-material interactions are found according to the size and position of the holes,which provides theoretical foundation for the microstructure design of clinical C/C composites. 展开更多
关键词 carbon/carbon composite matrix OSTEOBLAST growth behavior MICROSTRUCTURE
下载PDF
Synthesis of Co3O4 Nanoparticles Wrapped Within Full Carbon Matrix as an Anode Material for Lithium Ion Batteries 被引量:4
5
作者 Subhalaxmi Mohapatra Shantikumar V.Nair Alok Kumar Rai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第2期164-170,共7页
A facile polyol-assisted pyro-synthesis method was used to synthesize Co3O4 nanoparticles embedded into carbon matrix without using any conventional carbon source. The surface analysis by scanning electron microscopy ... A facile polyol-assisted pyro-synthesis method was used to synthesize Co3O4 nanoparticles embedded into carbon matrix without using any conventional carbon source. The surface analysis by scanning electron microscopy showed that the Co3O4 nanoparticles(-20 ± 5 nm) are tightly enwrapped within the carbon matrix. CHN analysis determined the carbon content was only 0.11% in the final annealed sample. The Co3O4@carbon exhibited high capacities and excellent cycling performance as an anode at various current rates(such as 914.4 and 515.5 mAh g^-1 at 0.25 and1.0 C, respectively, after 50 cycles; 318.2 mAh g^-1 at a high current rate of 5.0 C after 25 cycles). This superior electrochemical performance of the electrode can be attributed to the various aspects, such as,(1) the existence of carbon matrix, which acts as a flexible buffer to accommodate the volume changes during Li^+ion insertion/deinsertion and facilitates the fast Li^+and electron transfer and(2) the anchoring of Co3O4 nanoparticles within the carbon matrix prevents particles agglomeration. 展开更多
关键词 CO3O4 carbon matrix Pyro-synthesis ANODE Lithium ion battery
原文传递
Unraveling specific role of carbon matrix over Pd/quasi-Ce-MOF facilitating toluene enhanced degradation 被引量:4
6
作者 Chunjing Su Zhi Li +10 位作者 Mengqi Mao Wenhua Ye Jinping Zhong Quanming Ren Hairong Cheng Haomin Huang Mingli Fu Junliang Wu Yun Hu Daiqi Ye Haihong Xu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第11期1751-1762,I0003,共13页
Metal organic frameworks(MOFs)derivatives represented by quasi-MOFs have excellent physical and chemical properties and can be applied for the catalytic combustion of volatile organic compounds(VOCs).In this work,Pd/q... Metal organic frameworks(MOFs)derivatives represented by quasi-MOFs have excellent physical and chemical properties and can be applied for the catalytic combustion of volatile organic compounds(VOCs).In this work,Pd/quasi-Ce-BTC synthesized by simple one-step Npyrolysis was applied to the oxidation of toluene,showing excellent toluene catalytic activity(T_(90)=175℃,30000 mL/(g·h)).Microscopic analyses indicate the formation and interaction of a carbon matrix composite quasi-MOF structure interface.The results show that the amorphous carbon matrix formed during the partial pyrolysis of Ce-BTC significantly improves the adsorption and activation capacity of toluene in the reaction,and constructs a reductive system to maintain high concentrations of Ce^(3+)and Pd^(0),which can facilitate the activation and utilization of oxygen in reaction.Quasi in-situ XPS proves that carbon matrix is indirectly involved in the activation and storage of oxygen,and Pd^(0)is the crucial active site for the activation of oxygen.Stability and water resistance tests display good stability of Pd/quasi-Ce-BTC.This work provides a potential method for designing quasi-MOF catalysts towards VOCs effective abatement. 展开更多
关键词 Quasi-MOF Toluene oxidation carbon matrix Metal nanoparticles Oxygen activation ability Rare earths
原文传递
Vanadium nitride nanoparticles embedded in carbon matrix with pseudocapacitive behavior for high performance lithium-ion capacitors 被引量:3
7
作者 Jin-Hui Zhang Zi-Yang Chen +4 位作者 Tie-Zhu Xu Liu-Feng Ai Ying-Hong Xu Xiao-Gang Zhang Lai-Fa Shen 《Rare Metals》 SCIE EI CAS CSCD 2022年第7期2460-2469,共10页
Lithium-ion capacitors(LICs)have attracted wide attention due to their potential of achieving merits of high-power output as well as high energy density.How-ever,the key issue of kinetics mismatch between anode and ca... Lithium-ion capacitors(LICs)have attracted wide attention due to their potential of achieving merits of high-power output as well as high energy density.How-ever,the key issue of kinetics mismatch between anode and cathode hinders the electrochemical performance of LICs.Therefore,a vanadium nitride composite with nanoparti-cles embedded in carbon matrix(VN-C)was prepared as an efficiently pseudocapacitive anode material with high electronic conductivity and fast Li-ion diffusion rate.The VN-C composites were synthesized through one-step ammonia heating treatment at different temperatures among which the sample annealed at 600℃exhibits high specific capacity(513 mAh·g^(-1)at 0.1 A·g^(-1)),outstanding rate performance(~300 mAh·g^(-1)at 10 A·g^(-1)),and excellent cyclic steadiness(negligible capacity decay over 2000 cycles)in half-cell devices.A high-performance lithium-ion capacitor device was also fabricated by using VN-C-600 as the anode and activated carbon as the cath-ode,delivering a maximum energy density of 112.6 Wh·kg^(-1)and an extreme power density of 10 kW·kg^(-1). 展开更多
关键词 Vanadium nitride carbon matrix Pseudocapacitive behavior Lithium-ion capacitor
原文传递
Si_(3)N_(4)nanowires@pyrolytic carbon nanolayers coupled withhydroxyapatite nanosheets as reinforcement for carbon matrixcomposites with boosting mechanical and friction properties 被引量:3
8
作者 Lina Sun Leilei Zhang +4 位作者 Xuemin Yin Yeye Liu Yao Guo Hongchao Sheng Xianghui Hou 《Journal of Materiomics》 SCIE CSCD 2023年第1期197-205,共9页
Extensive attention has been drawn to the development of carbon-matrix composites for application in the aerospace and military industry,where a combination of high mechanical strength and excellent frictional propert... Extensive attention has been drawn to the development of carbon-matrix composites for application in the aerospace and military industry,where a combination of high mechanical strength and excellent frictional properties are required.Herein,carbon-matrix composites reinforced by Si_(3)N_(4)nanowires@pyrolytic carbon nanolayers(Si_(3)N_(4nws)@PyCnls)coupled with hydroxyapatite nanosheets is reported.The Si_(3)N_(4nws)@PyCnls(SP)with coaxial structure could increase the surface roughness of Si_(3)N_(4nws)and promote the stress transfer to the carbon matrix,whereas the porous hydroxyapatite nanosheets favor the infiltration of the carbon matrix and promote the interfacial bonding between the SP and carbon matrix.The carbon matrix composites reinforced by SP coupled with hydroxyapatite nanosheets(Si_(3)N_(4nws)@PyCnls-HA-C)exhibit excellent mechanical strength.Compare with the conventional Si_(3)N_(4nws)reinforced carbon composites,Si_(3)N_(4nws)@PyCnls-HA-C(SPHC)have 162%and 249%improvement in flexural strength and elastic modulus,respectively.Moreover,the friction coefficient and wear rate decreased by 53%and 23%,respectively.This study provides a co-reinforcement strategy generated by SP coupled with hydroxyapatite nanosheets for effective improvement of mechanical and frictional properties of carbon matrix composites that are used for aerospace and military industry applications. 展开更多
关键词 Silicon nitride nanowire Coaxial structure Hydroxyapatite nanosheet Mechanical strength Friction performance carbon matrix composites
原文传递
Template-assisted formation of atomically dispersed iron anchoring on nitrogen-doped porous carbon matrix for efficient oxygen reduction 被引量:1
9
作者 Ruoyu Pang Hongyin Xia +1 位作者 Jing Li Erkang Wang 《Nano Research》 SCIE EI CSCD 2023年第4期4671-4677,共7页
Isolated active metal atoms anchored on nitrogen-doped carbon matrix have been developed as the efficient catalyst for accelerating sluggish reaction kinetics of oxygen reduction reaction(ORR).The facile rational stru... Isolated active metal atoms anchored on nitrogen-doped carbon matrix have been developed as the efficient catalyst for accelerating sluggish reaction kinetics of oxygen reduction reaction(ORR).The facile rational structure engineering with abundant isolated active metal atoms is highly desirable but challenging.Herein,we demonstrate that atomically dispersed Fe sites(Fe-N4 moieties)on the hierarchical porous nitrogen-doped carbon matrix(Fe-SA-PNC)for high ORR activity can be achieved by a dual-template assisted strategy.By thermal decomposition of NH_(4)Cl template,the nitrogen-doped carbon matrix is generated based on the interaction with carbon precursor of citric acid.Meanwhile,the introduction of NaCl template facilitates the formation of hierarchical porous structures,which enable more active sites exposed and improve the mass transfer.Interestingly,the dual-template strategy can inhibit the formation of iron carbide nanoparticles(NPs)by generating porous structures and avoiding of the rapid loss of nitrogen during pyrolysis.The as-made Fe-SA-PNC catalysts with well-defined Fe-N_(4)active sites exhibit highly efficient ORR activity with a half-wave potential of 0.838 V versus the reversible hydrogen electrode,as well as good stability and methanol tolerance,outperforming the commercial Pt/C.The zinc-air battery(ZAB)constructed by Fe-SA-PNC also shows a higher peak power density and specific discharging capacity than that of Pt-based ZAB.The present work provides the facile strategy for tailoring nitrogen doping and porous structures simultaneously to prevent the formation NPs for achieving the well-dispersed and accessible single-atom active sites,paving a new way to design efficient electrocatalysts for ORR in fuel cells. 展开更多
关键词 template-assistance strategy nitrogen-doped porous carbon matrix single-atom Fe catalyst oxygen reduction reaction zinc-air battery
原文传递
Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes 被引量:9
10
作者 Jun-hui Nie Cheng-chang Jia Na Shi Ya-feng Zhang Yi Li XianJia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第6期695-702,共8页
To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)... To extend the application of carbon nanotubes (CNTs) and explore novel aluminum matrix composites,CNTs were coated by molybdenum layers using metal organic chemical vapor deposition,and then Mo-coated CNT (Mo-CNT)/Al composites were prepared by the combination processes of powder mixing and spark plasma sintering.The influences of powder mixing and Mo-CNT content on the mechanical properties and electrical conductivity of the composites were investigated.The results show that magnetic stirring is better than mechanical milling for mixing the Mo-CNTs and Al powders.The electrical conductivity of the composites decreases with increasing Mo-CNT content.When the Mo-CNT content is 0.5wt%,the tensile strength and hardness of Mo-CNT/Al reach their maximum values.The tensile strength of 0.5wt% Mo-CNT/Al increases by 29.9%,while the electrical conductivity only decreases by 7.1%,relative to sintered pure Al.The phase analysis of Mo-CNT/Al composites reveals that there is no formation of Al carbide in the composites. 展开更多
关键词 carbon nanotubes aluminum matrix composites molybdenum layer mechanical properties electrical conductivity
下载PDF
Synergistic regulation of current-carrying wear performance of resin matrix carbon brush composites with tungsten copper composite powder 被引量:1
11
作者 TU Chuan-jun GONG Pei +4 位作者 REN Gai-mei CHEN Gang CHEN Jian HONG Li-rui LIU Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期2973-2987,共15页
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak... Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear. 展开更多
关键词 resin matrix carbon brush composite tungsten copper composite powder current-carrying wear particle reinforcement
下载PDF
On the liquid-phase technology of carbon fiber/aluminum matrix composites 被引量:4
12
作者 Sergei Galyshev Andrew Gomzin +2 位作者 Rida Gallyamova Igor Khodos Fanil Musin 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第12期1578-1584,共7页
The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper ... The main problems with the liquid-phase technology of carbon fiber/aluminum matrix composites include poor wetting of the fiber with liquid aluminum and formation of aluminum carbide on the fibers’surface.This paper aims to solve these problems.The theoretical and experimental dependence of porosity on the applied pressure were determined.The possibility of obtaining a carbon fiber/aluminum matrix composite wire with a strength value of about 1500 MPa was shown.The correlation among the strength of the carbon fiber reinforced aluminum matrix composite,the fracture surface,and the degradation of the carbon fiber surface was discussed. 展开更多
关键词 carbon fiber/aluminum matrix COMPOSITE LIQUID-PHASE fabrication INFILTRATION pressure COMPOSITE POROSITY COMPOSITE wire ULTRASONIC
下载PDF
Detecting Impact Damage in Carbon Fabric/epoxy-matrix Composites by Ultrasonic F-scan and Electrical Resistance Measurement 被引量:3
13
作者 谢小林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第2期214-217,共4页
The status and the variation of electrical resistance of impacted carbon fiber/epoxy-matrix composites were studied by ultrasonic F-scan and electrical resistance measurement The experimental results shows that impact... The status and the variation of electrical resistance of impacted carbon fiber/epoxy-matrix composites were studied by ultrasonic F-scan and electrical resistance measurement The experimental results shows that impact damage energy threshold value of carbon fabric/epoxy-matrix composites can determine by using ultrasonic F-scan. When the impact energy exceeds the threshold value, damage is generated in composites. Electrical resistance of impacted composites is changed owing to the contact of each carbon fiber unit in composites, which cause a change of the series-parallel in conductors. The veracity of detecting impact damage in composites can be improved in this case. 展开更多
关键词 carbon fabric/epoxy-matrix composites impact damage ultrasonic F-scan electrical resistance measurement
下载PDF
Continuous Deformation Monitoring by Polymermatrix Carbon Fiber Sensitive Layer 被引量:2
14
作者 郑华升 ZHU Sirong LI Zhuoqiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第3期705-712,共8页
Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can cont... Composite made of short-cut carbon fiber mat and vinyl ester resin was observed to be an effective sensor for tensile strain up to 6 000με. Based on its strain sensitivity, a skin-like sensitive layer which can continuously cover the structural surface to sense strain in large area was developed. The sensitive layer was applied to continuously monitor the deformation of a simply supported beam. The result indicates that the fractional change in electrical resistance of the sensitive layer reversibly reflects the beam deformation in each section and describes the distribution of the average strain of the beam. The effect of temperature change on the monitoring was studied by monitoring tests conducted at different temperatures ranging from 20 to 80 ℃, which reveals temperature sensitivity in the sensitive layer and the temperature dependence of the piezoresistive behavior when the temperature exceeds 50 ℃. By the application of differential conaection principle, a method for temperature compensation was established and the gauge factor for the monitoring was dramatically increased. This method was verified experimentally. 展开更多
关键词 polymer-matrix carbon fiber sensitive layer strain sensitivity continuous deformation monitoring temperature compensation
下载PDF
A Versatile Method for Uniform Dispersion of Nanocarbons in Metal Matrix Based on Electrostatic Interactions 被引量:5
15
作者 Zan Li Genlian Fan +4 位作者 Zhanqiu Tan Zhiqiang Li Qiang Guo Dingbang Xiong Di Zhang 《Nano-Micro Letters》 SCIE EI CAS 2016年第1期54-60,共7页
Realizing the uniform dispersion of nanocarbons such as carbon nanotube and graphene in metals, is an essential prerequisite to fully exhibit their enhancement effect in mechanical, thermal, and electrical properties ... Realizing the uniform dispersion of nanocarbons such as carbon nanotube and graphene in metals, is an essential prerequisite to fully exhibit their enhancement effect in mechanical, thermal, and electrical properties of metal matrix composites(MMCs). In this work, we propose an effective method to achieve uniform distribution of nanocarbons in various metal flakes through a slurry-based method. It relies on the electrostatic interactions between the negatively charged nanocarbons and the positively charged metal flakes when mixed in slurry. For case study, flake metal powders(Al, Mg, Ti,Fe, and Cu) were positively charged in aqueous suspension by spontaneous ionization or cationic surface modification. While nanocarbons, given examples as carboxylic multi-walled carbon nanotubes, pristine single-walled carbon nanotube, and carbon nanotube–graphene oxide hybrid were negatively charged by the ionization of oxygen-containing functional groups or anionic surfactant. It was found that through the electrostatic interaction mechanism, all kinds of nanocarbons can be spontaneously and efficiently adsorbed onto the surface of various metal flakes. The development of such a versatile method would provide us great opportunities to fabricate advanced MMCs with appealing properties. 展开更多
关键词 Metal matrix composites UNIFORM DISPERSION carbon NANOTUBE Graphene ELECTROSTATIC INTERACTIONS
下载PDF
Fabrication and thermal conductivity of copper matrix composites reinforced by tungsten-coated carbon nanotubes 被引量:6
16
作者 Jun-hui Nie Cheng-chang Jia +3 位作者 XianJia Yi Li Ya-feng Zhang Xue-bing Liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第5期446-452,共7页
Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were... Carbon nanotubes (CNTs) were coated by tungsten using metal organic chemical vapor deposition. Magnetic stirring was employed to disperse the W-coated CNTs (W-CNTs) in a Cu matrix, and then, the mixed powders were consolidated by spark plasma sintering. The W-CNTs obtained a uniform dispersion within the Cu matrix when the W-CNT content was less than 5.0vo1%, but high content of W-CNTs (10vol%) resulted in the presence of clusters. The W-CNT/Cu composites containing low content of W-CNTs (〈5.0vol%) exhibited a higher thermal conductivity than the sintered pure Cu, while the CNT/Cu composites exhibited no increase in thermal conductivity after the incorporation of uncoated CNTs. The W-CNT content was found to play a crucial role in determining the thermal conductivity of the W-CNT/Cu composites. The thermal conductivity of the W-CNT/Cu composites increased first and then decreased with the W-CNT content increasing. When the W-CNT content was 2.5vo1%, the W-CNT/Cu composite obtained the maximum value of thermal conductivity. The thermal resistance of the (W-CNT)-Cu interface was predicted in terms of Maxwell-Gamett effective medium approximation, and its calculated value was about 3.0× 10-9 m2.K.W-l. 展开更多
关键词 metallic matrix composites (MMCs) carbon nanotubes TUNGSTEN copper spark plasma sintering thermal conductivity
下载PDF
Thermo-physical Properties of Continuous Carbon Fiber Reinforced Copper Matrix Composites
17
作者 曹金华 黄俊波 陈先有 《材料工程》 EI CAS CSCD 北大核心 2007年第z1期61-65,共5页
Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE... Continuous carbon fiber reinforced copper matrix composites with 70%(volume fraction) of carbon fibers prepared by squeeze casting technique have been used for investigation of the coefficient of thermal expansion(CTE) and thermal conductivity.Thermo-physical properties have been measured in both,longitudinal and transversal directions to the fiber orientation.The results showed that Cf/Cu composites may be a suitable candidate for heat sinks because of its good thermo-physical properties e.g.the low CTE(4.18×10-6/K) in longitudinal orientation and(14.98×10-6/K) in transversal orientation at the range of 20-50℃,a good thermal conductivity(87.2 W/m·K) in longitudinal orientation and(58.2 W/m·K) in transversal orientation.Measured CTE and thermal conductivity values are compared with those predicted by several well-known models.Eshelby model gave better results for prediction of the CTE and thermal conductivity of the unidirectional composites. 展开更多
关键词 carbon FIBER copper matrix composites THERMAL EXPANSION THERMAL CONDUCTIVITY
下载PDF
Damping capacity of amorphous carbon fiber/aluminum matrix composites at room temperature
18
作者 LI Aibin,WANG Hongmei,LI Shasha,and ZHENG Peiqi School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期115-119,共5页
The influence of volume fraction on damping capacities at room temperature for amorphous carbon fiber reinforced aluminum matrix composites was investigated.At room temperature,the dislocation damping is the primary d... The influence of volume fraction on damping capacities at room temperature for amorphous carbon fiber reinforced aluminum matrix composites was investigated.At room temperature,the dislocation damping is the primary damping mechanism.Meanwhile,the dislocation damping exhibits dynamic hysteresis at low strain amplitudes and static hysteresis at high strain amplitudes.Moreover,the damping capacity is rather sensitive to the volume fraction.Compared to unreinforced aluminum alloy,the additions of amorphous carbon fibers into the aluminum matrix can improve damping capacity below the volume fraction of 30%,whereas worsen above the volume fraction of 40%. 展开更多
关键词 carbon fiber aluminum matrix composite damping capacity volume fraction
下载PDF
Preparation of super-aligned carbon nanotube-reinforced nickel-matrix laminar composites with excellent mechanical properties 被引量:3
19
作者 Ze-cheng Hou Lun-qiao Xiong +2 位作者 Yuan-feng Liu Lin Zhu Wen-zhen Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第1期133-141,共9页
A homogeneous and compact super-aligned carbon nanotube(SACNT)-reinforced nickel-matrix composite was successfully prepared by electrodeposition. The mechanical properties of the laminar SACNT/Ni composites were subst... A homogeneous and compact super-aligned carbon nanotube(SACNT)-reinforced nickel-matrix composite was successfully prepared by electrodeposition. The mechanical properties of the laminar SACNT/Ni composites were substantially improved compared with those of pure nickel. With increasing content of SACNTs, the tensile strength of the composite increased and the elongation decreased because of the high-strength SACNTs bearing part of an applied load and the fine-grained strengthening mechanism. The nanohardness of the SACNT/Ni composites was improved from 3.92 GPa(pure nickel) to 4.62 GPa(Ni-4 vol%SACNTs). The uniform distribution of SACNTs in the composites and strong interfacial bonding between the SACNTs and the nickel matrix resulted in an improvement of the mechanical properties of the SACNT/Ni composites. The introduced SACNTs refined the nickel grains, increased the amount of crystal twins, and changed the preferred orientation of grain growth. 展开更多
关键词 nickel-matrix LAMINAR composite super-aligned carbon NANOTUBE electrodeposition mechanical properties
下载PDF
Fabrication,microstructures,and properties of copper matrix composites reinforced by molybdenum-coated carbon nanotubes 被引量:12
20
作者 NIE Junhui JIA Chengchang +3 位作者 JIA Xian ZHANG Yafeng SHI Na LI Yi 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期401-407,共7页
Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper p... Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites. 展开更多
关键词 metallic matrix composites mechanical properties ball milling MOLYBDENUM carbon nanotubes
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部