期刊文献+
共找到561篇文章
< 1 2 29 >
每页显示 20 50 100
Impregnation of carbonaceous nanofibers into glassy polymer-based composite membrane for CO_2 separation 被引量:1
1
作者 Pannir Selvam Murugiah Pei Ching Oh Kok Keong Lau 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第11期2385-2390,共6页
The development of defect-free composite membrane(CM) is often challenging due to poor dispersion and distribution of filler particles in the polymer matrix. Despite the attractive physicochemical properties and gas s... The development of defect-free composite membrane(CM) is often challenging due to poor dispersion and distribution of filler particles in the polymer matrix. Despite the attractive physicochemical properties and gas separation performance of carbon nanotube(CNT) based CM, CNT displayed poor dispersion characteristics in most polymer matrix domain. Instead of incorporating CNT, a viable alternative, carbon nanofiber(CNF) which exhibits similar properties as CNT, but improved dispersion quality in the polymer matrix is found. In this work,CNF particles were incorporated in poly(2,6-dimethyl-1,4-phenylene oxide)(PPOdm) polymer continuous phase for CM development. The optimum gas separation performance of the PPOdm-CNF CM(11.25 at 197.02 barrer of CO_2 permeability) was obtained at 3 wt% of CNF loading. Compared to pristine PPOdmmembrane,CO_2 permeability and CO_2/CH_4 selectivity of PPOdm-3 wt% CNF CM were enhanced by 180% and 55%, respectively.At 3 wt% CNF loading, the filler particles were dispersed and distributed more homogenously, in which no obvious CNF agglomeration was observed. In addition, the incorporation of CNF particles also enhanced the mechanical and thermal properties of the resultant CM. 展开更多
关键词 carbon nanofiber composite membrane carbon dioxide Gas SEPARATION
下载PDF
Flexural destructive process of unidirectional carbon/carbon composites reinforced with in situ grown carbon nanofibers 被引量:2
2
作者 卢雪峰 肖鹏 +1 位作者 徐先锋 陈洁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3134-3141,共8页
Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of... Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites. 展开更多
关键词 carbon nanofiber C/C composites flexural destruction crack propagation
下载PDF
N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries 被引量:9
3
作者 Yanfei Zeng Yudai Huang +7 位作者 Niantao Liu Xingchao Wang Yue Zhang Yong Guo Hong-Hui Wu Huixin Chen Xincun Tang Qiaobao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期727-735,共9页
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical... Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes. 展开更多
关键词 Pumpkin-like silicon/carbon composites N-doped porous carbon nanofibers Free-standing anode Lithium-ion batteries
下载PDF
Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries 被引量:2
4
作者 Qingyue Han Suqing Wang +2 位作者 Wenhan Kong Bing Ji Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期257-263,共7页
By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic... By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic conductivity at room temperature, narrow electrochemical stability window and uncontrolled growth of lithium dendrite. To alleviate these problems, we introduce the ultrathin graphitic carbon nitride nanosheets(GCN) as advanced nanofillers into PEO based electrolytes(GCN-CPE). Benefiting from the high surface area and abundant surface N-active sites of GCN, the GCN-CPE displays decreased crystallinity and enhanced ionic conductivity. Meanwhile, Fourier transform infrared and chronoamperometry studies indicate that GCN can facilitate Li+migration in the composite electrolyte. Additionally, the GCN-CPE displays an extended electrochemical window compared with PEO based electrolytes. As a result, Li symmetric battery assembled with GCN-CPE shows a stable Li plating/stripping cycling performance, and the all-solid-state Li/LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622) batteries using GCN-CPE exhibit satisfactory cyclability and rate capability in a voltage range of 3-4.2 V at 30 ℃. 展开更多
关键词 Electrolytes polymerS Graphitic carbon nitride nanosheets composites Room temperature All-solid-state battery
下载PDF
Facile Synthesis of Gold Nanoparticle-loaded Carbon Nanofiber Composites and Their Electrocatalytic Activity Towards Dopamine, Ascorbic Acid and Uric Acid 被引量:1
5
作者 TENG Hong LIU Yang YOU Tian-yan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2011年第3期496-499,共4页
A facile approach for the synthesis of gold nanoparticle-loaded carbon nanofiber(Au/CNF) composites was developed. When applied to electrochemistry, these composites showed attractive performances such as high condu... A facile approach for the synthesis of gold nanoparticle-loaded carbon nanofiber(Au/CNF) composites was developed. When applied to electrochemistry, these composites showed attractive performances such as high conductivity and facile electron transfer kinetics. Under physiological conditions, the Au/CNF composite modified electrode exhibits highly electrocatalytic activity for the oxidation of dopamine, ascorbic acid and uric acid. Owing to the good selectivity for the simultaneous detection of these three species, the novel composites are promising for the development of effective electrochemical biosensors. 展开更多
关键词 Gold nanoparticle-loaded carbon nanofiber composite ELECTROSPINNING ELECTROCATALYSIS DOPAMINE Ascorbic acid Uric acid
下载PDF
Effect of neat and reinforced polyacrylonitrile nanofibers incorporation on interlaminar fracture toughness of carbon/epoxy composite 被引量:3
6
作者 S.M.J.Razavi R.Esmaeely Neisiany +2 位作者 S.Nouri Khorasani S.Ramakrishna F.Berto 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期126-131,共6页
This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, t... This paper presents an experimental investigation on fracture behavior of epoxy resin-carbon fibers composites interleaved with both neat polyacrylonitrile (PAN) nanofibers and A1203-PAN nanofibers. In particular, the paper focuses on the effect of adding Al2O3 nanopartiles in PAN nanofibers, which were incorporated in unidirectional (UD) laminates. The effectiveness of adding a thin film made of Al2O3-PAN on the fracture behavior of the carbon fiber reinforced polymer (CFRP) has been addressed by comparing the energy release rates, obtained by testing double cantilever beam (DCB) samples under mode I loading condition. A general improvement in interlaminar fracture energy of the CFRP is observed when the both neat PAN nanofibers and Al2O3-PAN nanofibers are interleaved. However, higher interlaminar strength has been observed for the samples with a thin film of Al2O3-PAN nanofibers, suggesting a better stress distribution and stress transformation from resin-rich area to reinforcement phase of hybrid composites. 展开更多
关键词 carbon fiber reinforced polymer Delamination Fracture test nanofibers Al2O3 nanoparticles
下载PDF
Wear and transfer characteristics of carbon fiber reinforced polymer composites under water lubrication 被引量:1
7
作者 JIA Jun-hong CHEN Jian-min +1 位作者 ZHOU Hui-di CHEN Lei 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期332-340,共9页
The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron micros... The tribological characteristics of carbon fiber reinforced polymer composites under distilled-water-lubricated-sliding and dry-sliding against stainless steel were comparatively investigated. Scanning electron microscopy (SEM) was utilized to examine composite microstructures and modes of failure. The typical chemical states of elements of the transfer film on the stainless steel were examined with X-ray photoelectron spectroscopy (XPS). Wear testing and SEM analysis show that all the composites hold the lowered friction coefficient and show much better wear resistance under water lubricated sliding against stainless steel than those under dry sliding. The wear of composites is characterized by plastic deformation, scuffing, micro cracking, and spalling under both dry-sliding and water lubricated conditions. Plastic deformation, scuffing, micro cracking, and spalling, however, are significantly abated under water-lubricated condition. XPS analysis conforms that none of the materials produces transfer films on the stainless steel counterface with the type familiar from dry sliding, and the transfer of composites onto the counterpart ring surface is significantly hindered while the oxidation of the stainless steel is speeded under water lubrication. The composites hinder transfer onto the steel surface and the boundary lubricating action of water accounts for the much smaller wear rate under water lubrication compared with that under dry sliding. The easier transfer of the composite onto the counterpart steel surface accounts for the larger wear rate of the polymer composite under dry sliding. 展开更多
关键词 friction and wear transfer film water lubrication carbon fiber polymer composite
下载PDF
Reinforced copper matrix composites with highly dispersed nano size TiC in-situ generated from the Carbon Polymer Dots 被引量:2
8
作者 Xiao Huang Longke Bao +8 位作者 Rui Bao Liang Liu Jingmei Tao Jinsong Wang Zhengfu Zhang Zhenhua Ge Songlin Tan Jianhong Yi Fanran Meng 《Advanced Powder Materials》 2023年第2期1-10,共10页
In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for s... In order to uniformly disperse the ceramic reinforcements synthesized in-situ in the copper matrix composites,this study used Carbon Polymer Dot(CPD)as the carbon source and Cu–1.0%Ti alloy powder as the matrix for supplying Ti source to prepare in-situ synthesized TiC/Cu composites.The results show that TiC nano-precipitates,having the similar particle sizes with the CPD,form at the grains interior and grain boundaries,and maintain a uniform distribution state.Compared with the matrix,0.3 wt%CPD/Cu composite displays the best strengthplastic compatibility,the ultimate tensile strength achieves 385 MPa accompanied with a corresponding elongation of 21%,owing to the dislocation hindrance caused by nano-carbide and excellent interface bonding between nano TiC and the Cu matrix.The density function theory calculation supports our experimental results by showing a tighter and stronger interface contact.This work presents a new approach for studying in-situ carbide precipitates. 展开更多
关键词 Cu matrix composites In situ generation TiC phase carbon polymer Dot Powder metallurgy
下载PDF
The Packaging Materials with Carbon Nanotube/Polymer Composites
9
作者 Shen-Li-Fu Wern-Shirang Jou Huy-Zu Cheng 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期1-2,共2页
A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The ... A polymer-based carbon nano-tubes (CNTs) composite with high electromagnetic (EM) wave shielding effectiveness (SE) and with high mechanical property is developed for packaging of electronic modulus or devices.The liquid crystal polymers (LCP) and melamine formaldehydes (MF) polymer are used to study the orientation effect of CNTs in various polymeric matrix.The influences of orientation,aspect ratio,and mass fraction of CNTs upon the shielding effectiveness (SE) of CNTs-composites are investigated.The higher the orientation,aspect ratio,and weight percentages of nano-materials are, the higher the SE of the carbon composites.The highest SE for the CNTs/LCP nano composite obtained is more than 62 dB. This results may lead to the developing for CPU IC chip packaging. 展开更多
关键词 packaging materials carbon nano-tube polymer composites
下载PDF
Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin
10
作者 Jinlong Shang 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2315-2327,共13页
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr... In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%. 展开更多
关键词 polymer aerospace materials corrosion carbonfiber composite material epoxy resin mechanical properties thermal analysis
下载PDF
Surface Functionalized Carbon Nanofibers and Their Effect on the Dispersion and Tribological Property of Epoxy Nanocomposites
11
作者 朱艳吉 汪怀远 +1 位作者 LI Haiyan ZHU Jiahua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1219-1225,共7页
Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of... Surface functionalization of carbon nanofibers(CNFs) was carried out, i e, CNFs were firstly oxidized and then the surface was silanized by 3-Aminopropyltriethoxysilane(APTES) via an assembly method. A new kind of high wear resistance s-CNFs/epoxy composite was fabricated by in-situ reaction. FTIR spectroscopy was used to detect the changes of the functional groups produced by silane on the surface of CNFs. The tribological properties and microstructures of modified and unmodified CNFs/epoxy composites were studied, respectively. The expremental results indicate that APTES is covalently linked to the surface of CNFs successfully and improves the dispersion of CNF in epoxy matrix. The friction coefficients and the wear rates of s-CNFs/epoxy composites are evidently lower than those of u-CNFs/epoxy composites under the same loads. Investigations also indicate that abrasive wear is the main wear mechanism for u-CNFs/epoxy composite, with slight adhesive wear for s-CNFs/epoxy composite under the same sliding wear condition. 展开更多
关键词 polymer-matrix composites carbon nanofibers surfaces functionalization friction and wear morphology
下载PDF
Fabrication of Silicon/Carbon Composite Material with Silicon Waste and Carbon Nanofiber Applied in Lithium-Ion Battery
12
作者 Ying-Yang Li Che-Ya Wu +1 位作者 Tzu-Ying Lin Jenq-Gong Duh 《Journal of Environmental Protection》 2022年第1期150-160,共11页
Silicon (Si) is regarded as a promising material for lithium-ion battery anode because of high theoretical capacity. Nevertheless, Si faces particle pulverization and rapid capacity fading due to serious volume change... Silicon (Si) is regarded as a promising material for lithium-ion battery anode because of high theoretical capacity. Nevertheless, Si faces particle pulverization and rapid capacity fading due to serious volume change during the lithiation and the delithiation process. In this work, a silicon/carbon composite constituted to Si powder and carbon nanofiber (CNF) is produced to solve the above issues as a new design structure of anode material. The Si powder was recycled from the silicon slicing waste in photovoltaic industry and the CNF was from dry rice straws. By mixing the purified Si powder with CNF, the composite was synthesized by the freeze-drying method and calcination. In the cyclic test, Si adding with 1 wt% CNF showed 3091 mAh/g capacity in the first cycle and 1079 mAh/g capacity after 100 cycles at the current density of 0.5 A/g, which were both better than pristine Si. SEM images also show the composite structure can eliminate cracks on the surface of the electrode during cycling. CNF attaching on Si particles can increase specific surface area, so binder can easily combine the active materials and the conductive materials together. This strategy enhances the structure stability and prevents the electrode from delamination. 展开更多
关键词 composite Material carbon nanofiber Waste Silicon Anode Material Lithium-Ion Battery
下载PDF
Fabrication of Polymer Magnetic Nanocomposites Containing Carbon Nanoparticles Doped with Cobalt Nanoclusters and Study Their Conductivity, Self-Healing and Adhesion Properties
13
作者 G. I. Маmniashvili D. I. Gventsadze +1 位作者 L. N. Rukhadze L. A. Maisuradze 《World Journal of Condensed Matter Physics》 2020年第3期118-134,共17页
The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elabor... The technology of fabrication of polymer nanocomposites on basis of carbon nanoparticles doped with cobalt clusters, synthesized by original Chemical Vapore Deposition (CVD) technology developed by authors, was elaborated. Carbon shells provide both the protection of ferromagnetic impurities from aggressive environment and new unique properties to the hybride nanostructures. The self-assembling of magnetic clusters coated by carbon shells presents just such example which could be used in the contemporary materials, for example, in strong magnets, analytic instruments (nuclear magnetic resonance tomographs) and nanosensors. Their good conductivity, self-healing and adhesion properties were demonstrated by applying the combined action of temperature, pressure, steady and alternating magnetic fields to stimulate diffusion of magnetic nanoparticles in direction to defect sites. Due to these properties fabricated magnetic polymer nanocomposites could have perspective for potential. 展开更多
关键词 Magnetic carbon Nanopowder polymer composite Stimulated Diffusion SELF-HEALING SELF-ORGANIZATION Resistance
下载PDF
PREPARATION OF CARBON NANOFIBERS BY POLYMER BLEND TECHNIQUE
14
作者 LING Fen YANG Pengfei +2 位作者 PAN Wei YANG Shenglin LI Guang 《Chinese Journal of Reactive Polymers》 2007年第1期108-111,共4页
The polymer blend technique is a novel method to produced carbon nanofibers. In this paper, we have prepared fine carbon fibers and porous carbon materials by this technique, and we will discuss the experiment results... The polymer blend technique is a novel method to produced carbon nanofibers. In this paper, we have prepared fine carbon fibers and porous carbon materials by this technique, and we will discuss the experiment results by means of SEM, TGA, Element Analysis, etc. 展开更多
关键词 carbon nanofibers polymer blend WET-SPINNING Compatibility Morphology.
下载PDF
Flexible piezoresistive pressure sensor based on a graphene-carbon nanotube-polydimethylsiloxane composite
15
作者 Huifen Wei Xiangmeng Li +2 位作者 Fangping Yao Xinyu Feng Xijing Zhu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期35-44,共10页
Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here ... Flexible sensors are used widely in wearable devices, specifically flexible piezoresistive sensors, which are common and easy to manipulate.However, fabricating such sensors is expensive and complex, so proposed here is a simple fabrication approach involving a sensor containing microstructures replicated from a sandpaper template onto which polydimethylsiloxane containing a mixture of graphene and carbon nanotubes is spin coated. The surface morphologies of three versions of the sensor made using different grades of sandpaper are observed, and the corresponding pressure sensitivities and linearity and hysteresis characteristics are assessed and analyzed. The results show that the sensor made using 80-mesh sandpaper has the best sensing performance. Its sensitivity is 0.341 kPa-1in the loading range of 0–1.6 kPa, it responds to small external loading of 100 Pa with a resistance change of 10%, its loading and unloading response times are 0.126 and 0.2 s, respectively,and its hysteresis characteristic is ~7%, indicating that the sensor has high sensitivity, fast response, and good stability. Thus, the presented piezoresistive sensor is promising for practical applications in flexible wearable electronics. 展开更多
关键词 Piezoresistive sensor Flexible sensor GRAPHENE carbon nanotube polymer composite Microstructure
下载PDF
Highly Thermally Conductive Polymer/Graphene Composites with Rapid Room‑Temperature Self‑Healing Capacity 被引量:7
16
作者 Huitao Yu Can Chen +4 位作者 Jinxu Sun Heng Zhang Yiyu Feng Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期194-207,共14页
Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects.However,in view of the complexity of composite structure and composition,its self-heal is faci... Composites that can rapidly self-healing their structure and function at room temperature have broad application prospects.However,in view of the complexity of composite structure and composition,its self-heal is facing challenges.In this article,supramolecular effect is proposed to repair the multistage structure,mechanical and thermal properties of composite materials.A stiff and tough supramolecular frameworks of 2-[[(butylamino)carbonyl]oxy]ethyl ester(PBA)–polydimethylsiloxane(PDMS)were established using a chain extender with double amide bonds in a side chain to extend prepolymers through copolymerization.Then,by introducing the copolymer into a folded graphene film(FGf),a highly thermally conductive composite of PBA–PDMS/FGf with self-healing capacity was fabricated.The ratio of crosslinking and hydrogen bonding was optimized to ensure that PBA–PDMS could completely self-heal at room temperature in 10 min.Additionally,PBA–PDMS/FGf exhibits a high tensile strength of 2.23±0.15 MPa at break and high thermal conductivity of 13±0.2 W m^(−1)K^(−1);of which the self-healing efficiencies were 100%and 98.65%at room temperature for tensile strength and thermal conductivity,respectively.The excellent self-healing performance comes from the efficient supramolecular interaction between polymer molecules,as well as polymer molecule and graphene.This kind of thermal conductive self-healing composite has important application prospects in the heat dissipation field of next generation electronic devices in the future. 展开更多
关键词 carbon/polymer composites Self-healing capacity High thermal conductivity Molecular simulation Room temperature
下载PDF
High-performance all-solid-state polymer electrolyte with fast conductivity pathway formed by hierarchical structure polyamide 6 nanofiber for lithium metal battery 被引量:5
17
作者 Lu Gao Jianxin Li +3 位作者 Jingge Ju Bowen Cheng Weimin Kang Nanping Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期644-654,共11页
The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility gre... The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility greatly restrict the development of all-solid-state battery.In this study,a composite electrolyte combining the electrospun polyamide 6(PA6)nanofiber membrane with hierarchical structure and the polyethylene oxide(PEO)polymer is investigated.The introduction of PA6 nanofiber membrane can effectively reduce the crystallinity of the polymer,so that the ionic conductivity of the electrolyte can be enhanced.Moreover,it is found that the presence of finely branched fibers in the hierarchical structure PA6 membrane allows the polar functional groups(C=O and N-H bonds)to be fully exposed,which provides sufficient functional sites for lithium ion transport and helps to regulate the uniform deposition of lithium metal.Moreover,the hierarchical structure can enhance the mechanical strength(9.2 MPa)of the electrolyte,thereby effectively improving the safety and cycle stability of the battery.The prepared Li/Li symmetric battery can be stably cycled for 1500 h under 0.3 mA cm^(-2) and 60℃.This study demonstrates that the prepared electrolyte has excellent application prospects in the next generation all-solid-state lithium metal batteries. 展开更多
关键词 Hierarchical structure PA6 electrospun nanofiber membrane All-solid-state composite polymer electrolyte Lithium metal battery
下载PDF
Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness 被引量:1
18
作者 S.AFSHIN M.H.YAS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期785-804,共20页
This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The... This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The governing equations are derived based on the first shear deformation theory(FSDT). A three-phase HalpinTsai approach is used to predict the mechanical properties of the PHC. We focus our attention on the effect of the simultaneous addition of NC and CNT on the vibration and buckling analysis of the PHC beam with variable thickness. Also a comparison study is done on the sensation of three impressive parameters including CNT, NC weight fractions, and the shape factor of fillers on the mechanical properties of PHC beams,as well as fundamental frequencies of free vibrations and critical buckling load. The results show that the increase of shape factor value, NC, and CNT weight fractions leads to considerable reinforcement in mechanical properties as well as increase of the dimensionless fundamental frequency and buckling load. The variation of CNT weight fraction on elastic modulus is more sensitive rather than shear modulus but the effect of NC weight fraction on elastic and shear moduli is fairly the same. The shape factor values more than the medium level do not affect the mechanical properties. 展开更多
关键词 polymer hybrid composite(PHC) Halpin-Tsai carbon nanotube(CNT) nanoclay(NC) free vibration buckling load
下载PDF
Processing and Characterization of PMMA Nanofiber Reinforced Epoxy Composites 被引量:1
19
作者 Salwan Al-Assafi Nils de Bruijn Ahmed M. Al-Jumaily 《World Journal of Nano Science and Engineering》 2016年第2期58-63,共6页
Growing demand for high-performance materials is driving the development of composites with nano material reinforcement. The use of nano reinforcement can provide a distinct advantage due to high surface area of the m... Growing demand for high-performance materials is driving the development of composites with nano material reinforcement. The use of nano reinforcement can provide a distinct advantage due to high surface area of the material. There are still many challenges in achieving the full potential of nanocomposites. In this paper, we investigate the performance of epoxy nanocomposites reinforced with short polymethyl methacrylate (PMMA) nanofibers. PMMA nanofibers were chopped and mixed with the epoxy resin and then the mixture was poured into a mould. Samples were cut to an appropriate size after cure and mechanical testing was carried out. Tensile and flexural strength and modulus were evaluated for samples with various fiber volume fractions to determine changes in mechanical performance. Also Scanning Electron Microscopy was utilized to investigate fracture surface and fiber-matrix interface. Results indicated that mechanical performance dropped as volume fraction of fibers increased, namely poor fiber-matrix adhesion and presence of porosity resulted in deterioration in strength and modulus. Further research is required to develop fiber coating system to enhance performance of the nanocomposite by improving fiber-matrix adhesion and fiber wet-out. 展开更多
关键词 NANOcomposite nanofiber EPOXY ELECTROSPINNING PMMA polymer composites
下载PDF
Multifunctional characteristics of 3D printed polymer nanocomposites under monotonic and cyclic compression
20
作者 Pawan Verma Jabir Ubaid +2 位作者 Fahad Alam Suleyman Deveci S.Kumar 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期13-22,共10页
This study presents the multifunctional characteristics of multi-walled carbon nanotube(MWCNT)/polypropylene random copolymer(PPR) composites enabled via fused filament fabrication(FFF) under monotonic and quasi-stati... This study presents the multifunctional characteristics of multi-walled carbon nanotube(MWCNT)/polypropylene random copolymer(PPR) composites enabled via fused filament fabrication(FFF) under monotonic and quasi-static cyclic compression. Utilizing in-house MWCNT-engineered PPR filament feedstocks, both bulk and cellular composites were realized. The morphological features of nanocomposites were examined via scanning electron microscopy, which reveals that MWCNTs are uniformly dispersed. The uniformly dispersed MWCNTs forms an electrically conductive network within the PPR matrix, and the resulting nanocomposite shows good electrical conductivity(~10^(-1)S/cm), improved mechanical performance(modulus increases by 125% and compressive strength increases by 25% for 8 wt% MWCNT loading) and pronounced piezoresistive response(gauge factor of 27.9-8.5 for bulk samples)under compression. The influence of strain rate on the piezoresistive response of bulk samples(4 wt% of MWCNT) under compression was also measured. Under repeated cyclic compression(2% constant strain amplitude), the nanocomposite exhibited stable piezoresistive performance up to 100 cycles. The piezoresistive response under repeated cyclic loading with increasing strain amplitude of was also assessed.The gauge factor of BCC and FCC cellular composites(4 wt% of MWCNT) with a relative density of 30%was observed to be 46.4 and 30.2 respectively, under compression. The higher sensitivity of the BCC plate-lattice could be attributed to its higher degree of stretching-dominated deformation behavior than the FCC plate-lattice, which exhibits bending-dominated behavior. The 3D printed cellular PPR/MWCNT composites structures were found to show excellent piezoresistive self-sensing characteristics and open new avenues for in situ structural health monitoring in various applications. 展开更多
关键词 carbon nanotubes Nanoengineered polymer composites 3D printing Piezoresistive self-sensing Lattice structures
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部