期刊文献+
共找到142篇文章
< 1 2 8 >
每页显示 20 50 100
Mesoporous Carbon Nanofibers Loaded with Ordered PtFe Alloy Nanoparticles for Electrocatalytic Nitrate Reduction to Ammonia
1
作者 XIE Meng LUO Wei QIU Pengpeng 《Journal of Donghua University(English Edition)》 CAS 2024年第4期365-376,共12页
Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we... Highly dispersed bimetallic alloy nanoparticle electrocatalysts have been demonstrated to exhibit exceptional performance in driving the nitrate reduction reaction(NO_(3)RR)to generate ammonia(NH_(3)).In this study,we prepared mesoporous carbon nanofibers(mCNFs)functionalized with ordered PtFe alloys(O-PtFe-mCNFs)by a composite micelle interface-induced co-assembly method using poly(ethylene oxide)-block-polystyrene(PEO-b-PS)as a template.When employed as electrocatalysts,O-PtFe-mCNFs exhibited superior electrocatalytic performance for the NO_(3RR)compared to the mCNFs functionalized with disordered PtFe alloys(D-PtFe-mCNFs).Notably,the NH_(3)production performance was particularly outstanding,with a maximum NH_(3)yield of up to 959.6μmol/(h·cm~2).Furthermore,the Faraday efficiency(FE)was even 88.0%at-0.4 V vs.reversible hydrogen electrode(RHE).This finding provides compelling evidence of the potential of ordered PtFe alloy catalysts for the electrocatalytic NO_(3)RR. 展开更多
关键词 ordered PtFe alloy mesoporous carbon nanofiber(mCNF) nitrate reduction reaction(NO3RR) ammonia(NH3)production reaction
下载PDF
Chemically activated carbon nanofibers for adsorptive removal of bisphenol-A:Batch adsorption and breakthrough curve study
2
作者 Wenming Hao Basma I.Waisi +1 位作者 Timothy M.Vadas Jeffrey R.McCutcheon 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期248-259,共12页
Activated carbon nanofibers(ACNFs)with small diameter can significantly increase the accessibility of intra pores and accelerate adsorption of molecules from water.In this study,ACNFs were made by blending K_(2)CO_(3)... Activated carbon nanofibers(ACNFs)with small diameter can significantly increase the accessibility of intra pores and accelerate adsorption of molecules from water.In this study,ACNFs were made by blending K_(2)CO_(3)or ZnCl_(2)as the activating agent into the polyacrylonitrile(PAN)in dimethylformamide solution for electrospinning prior to pyrolysis.Bisphenol-A(BPA),an endocrine disruption pollutant,is widely applied in the production of polycarbonate plastics and epoxy resins.Accordingly,BPA is often used as a model contaminant commonly removed via adsorption.Batch adsorption studies were used to evaluate the kinetics and adsorption capacity of the ACNFs.Redlich-Peterson(R-P)and Langmuir models were found to fit the isotherm of BPA adsorption better than Freundlich model,showing the homogeneous nature of the PAN originated ACNFs.The adsorption kinetics was better described by the pseudo second-order model than that by the pseudo first-order model.The fitting by intraparticle diffusion model indicates the adsorption of BPA onto ACNFs is mainly controlled by pore diffusion.High pH value and ionic strength reduced BPA adsorption from aqueous solution.The breakthrough curves studied in two different fixed bed systems(cross flow bed system and packed flow bed system)confirmed the scalability of BPA removal by ACNFs in dynamic adsorption processes.The modified dose-response model predicted well the fixed-bed outlet concentration profiles. 展开更多
关键词 Activated carbon nanofibers(ACNFs) Chemical activation Bisphenol-A(BPA) Fixed bed ADSORPTION
下载PDF
PtZn nanoparticles supported on porous nitrogen-doped carbon nanofibers as highly stable electrocatalysts for oxygen reduction reaction
3
作者 Lei Zhao Jinxia Jiang +6 位作者 Shuhao Xiao Zhao Li Junjie Wang Xinxin Wei Qingquan Kong Jun Song Chen Rui Wu 《Nano Materials Science》 EI CAS CSCD 2023年第3期329-334,共6页
The oxygen reduction reaction(ORR)electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles(NPs)on a porous carbon support with large surface area.Howev... The oxygen reduction reaction(ORR)electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles(NPs)on a porous carbon support with large surface area.However,such catalysts are often obtained by constructing porous carbon support followed by depositing Pt and its alloy NPs inside the pores,in which the migration and agglomeration of Pt NPs are inevitable under harsh operating conditions owing to the relatively weak interaction between NPs and carbon support.Here we develop a facile electrospinning strategy to in-situ prepare small-sized PtZn NPs supported on porous nitrogen-doped carbon nanofibers.Electrochemical results demonstrate that the as-prepared PtZn alloy catalyst exhibits excellent initial ORR activity with a half-wave potential(E_(1/2))of 0.911 V versus reversible hydrogen electrode(vs.RHE)and enhanced durability with only decreasing 11 mV after 30,000 potential cycles,compared to a more significant drop of 24 mV in E_(1/2)of Pt/C catalysts(after 10,000 potential cycling).Such a desirable performance is ascribed to the created triple-phase reaction boundary assisted by the evaporation of Zn and strengthened interaction between nanoparticles and the carbon support,inhibiting the migration and aggregation of NPs during the ORR. 展开更多
关键词 PtZn alloy Porous nitrogen-doped carbon nanofibers ELECTROSPINNING Oxygen reduction reaction
下载PDF
3D Free-Standing Carbon Nanofibers Modified by Lithiophilic Metals Enabling Dendrite-Free Anodes for Li Metal Batteries
4
作者 Huifeng Zhuang Tengfei Zhang +4 位作者 Hong Xiao Xiao Liang Fanchao Zhang Jianlin Deng Qiuming Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期373-384,共12页
Li metal with high-energy density is considered as the most promising anode for the next-generation rechargeable Li metal batteries;however,the growth of Li dendrites seriously hinders its practical application.Herein... Li metal with high-energy density is considered as the most promising anode for the next-generation rechargeable Li metal batteries;however,the growth of Li dendrites seriously hinders its practical application.Herein,3D free-standing carbon nanofibers modified by lithiophilic metal particles(CNF/Me,Me=Sn,Fe,Co)are obtained in situ by the electrospinning method.Benefiting from the lithophilicity,the CNF/Me composite may effectively prevent the formation of Li dendrites in the Li metal batteries.The optimized CNF/Sn–Li composite electrode exhibits a stable cycle life of over 2350 h during Li plating/stripping.When matched with typical commercial LiFePO_(4)(LFP)cathode,the LFP//CNF/Sn–Li full cell presents a high initial discharge specific capacity of 139 mAh g^(−1)at 1 C,which remains at 146 mAh g^(−1)after 400 cycles.When another state-of-the-art commercial LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM(811))cathode is used,the assembled NCM//CNF/Sn–Li full cell shows a large initial specific discharge capacity of 206 mAh g^(−1)at substantially enhanced 10 C,which keeps at the good capacity of 99 mAh g^(−1)after 300 cycles.These results are greatly superior to the counterparts with Li as the anodes,indicating the great potential for practical utilization of the advanced CNF/Sn–Li electrode. 展开更多
关键词 3D free-standing carbon nanofibers dendrite-free anodes electrospinning method lithiophilic metal lithium metal batteries
下载PDF
Integration of Desulfurization and Lithium-Sulfur Batteries Enabled by Amino-Functionalized Porous Carbon Nanofibers 被引量:2
5
作者 Minghui Sun Xuzhen Wang +2 位作者 Yong Li Zongbin Zhao Jieshan Qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期334-343,共10页
Hydrogen sulfide(H_(2)S)is an industrial exhausted gas that is highly toxic to humans and the environment.Combining desulfurization and fabrication of cathode materials for lithium-sulfur batteries(LSBs)can solve this... Hydrogen sulfide(H_(2)S)is an industrial exhausted gas that is highly toxic to humans and the environment.Combining desulfurization and fabrication of cathode materials for lithium-sulfur batteries(LSBs)can solve this issue with a double benefit.Herein,the amino-functionalized lotus root-like carbon nanofibers(NH_(2)-PLCNFs)are prepared by the amination of electrospinning carbon nanofibers under dielectric barrier discharge plasma.Selective catalytic oxidation of H_(2)S to elemental sulfur(S)is achieved over the metalfree NH_(2)-PLCNFs catalyst,and the obtained composite S@NH_(2)-PLCNFs is further used as cathode in LSBs.NH_(2)-PLCNFs enable efficient desulfurization(removal capacity as high as 3.46 g H_(2)S g^(−1) catalyst)and strongly covalent stabilization of S on modified carbon nanofibers.LSBs equipped with S@NH_(2)-PLCNFs deliver a high specific capacity of 705.8 mA h g^(−1) at 1 C after 1000 cycles based on the spatial confinement and the covalent stabilization of electroactive materials on amino-functionalized porous carbon matrix.It is revealed that S@NH_(2)-PLCNFs obtained by this kind of chemical vapor deposition leads to a more homogeneous S distribution and superior electrochemical performance to the sample S/NH_(2)-PLCNF-M prepared by the traditional molten infusion.This work opens a new avenue for the combination of environment protection and energy storage. 展开更多
关键词 AMINO-FUNCTIONALIZATION DESULFURIZATION lithium-sulfur batteries porous carbon nanofiber sulfur immobilization
下载PDF
A correlation between structural changes in a Ni-Cu catalyst during decomposition of ethylene/ammonia mixture and properties of nitrogen-doped carbon nanofibers 被引量:1
6
作者 O. Yu. Podyacheva A. N. Shmakov +4 位作者 A. I. Boronin L. S. Kibis S. V. Koscheev E. Yu. Gerasimov Z. R. Ismagilov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期270-278,共9页
Changes of a 65Ni25Cu10A1203 catalyst consisting of Ni-enriched and Cu-enriched alloys were investigated in the bulk and on the surface during the growth of nitrogen-doped carbon nanofibers (N-CNFs) by decomposition... Changes of a 65Ni25Cu10A1203 catalyst consisting of Ni-enriched and Cu-enriched alloys were investigated in the bulk and on the surface during the growth of nitrogen-doped carbon nanofibers (N-CNFs) by decomposition of a 50%C2I-I4/50%NH3 mixture using in situ X-ray diffraction (XRD) analysis, ex situ X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) techniques. It was shown that N-CNF growth at 450-650 ℃is accompanied by dissolution of carbon and nitrogen in the Ni-enriched alloy, whereas Cu-enriched alloy remains inactive. A correlation between nickel and copper surface concentrations and properties of N-CNFs in relation to the nitrogen content was found. It was demonstrated that phase composition of the catalyst during N-CNF growth determines the type of N-CNFs structure. 展开更多
关键词 carbon nanofibers nitrogen-doped carbon nanofibers XRD in situ XPS CATALYST
下载PDF
Flexural destructive process of unidirectional carbon/carbon composites reinforced with in situ grown carbon nanofibers 被引量:2
7
作者 卢雪峰 肖鹏 +1 位作者 徐先锋 陈洁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3134-3141,共8页
Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of... Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites. 展开更多
关键词 carbon nanofiber C/C composites flexural destruction crack propagation
下载PDF
N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries 被引量:9
8
作者 Yanfei Zeng Yudai Huang +7 位作者 Niantao Liu Xingchao Wang Yue Zhang Yong Guo Hong-Hui Wu Huixin Chen Xincun Tang Qiaobao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期727-735,共9页
Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical... Dramatic capacity fading and poor rate performance are two main obstacles that severely hamper the widespread application of the Si anode owing to its large volume variation during cycling and low intrinsic electrical conductivity.To mitigate these issues,free-standing N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites(Si/C-ZIF-8/CNFs)are designed and synthesized by electrospinning and carbonization methods,which present greatly enhanced electrochemical properties for lithium-ion battery anodes.This particular structure alleviates the volume variation,promotes the formation of stable solid electrolyte interphase(SEI)film,and improves the electrical conductivity.As a result,the as-obtained free-standing Si/C-ZIF-8/CNFs electrode delivers a high reversible capacity of 945.5 mAh g^(-1) at 0.2 A g^(-1) with a capacity retention of 64% for 150 cycles,and exhibits a reversible capacity of 538.6 mA h g^(-1) at 0.5 A g^(-1) over 500 cycles.Moreover,the full cell composed of a freestanding Si/C-ZIF-8/CNFs anode and commercial LiNi_(1/3)Co_(1/3)Mn_(1/3)O_(2)(NCM)cathode shows a capacity of 63.4 mA h g^(-1) after 100 cycles at 0.2 C,which corresponds to a capacity retention of 60%.This rational design could provide a new path for the development of high-performance Si-based anodes. 展开更多
关键词 Pumpkin-like silicon/carbon composites N-doped porous carbon nanofibers Free-standing anode Lithium-ion batteries
下载PDF
Porous nitrogen-enriched hollow carbon nanofibers as freestanding electrode for enhanced lithium storage 被引量:5
9
作者 Xiaosa Xu Yuqian Qiu +7 位作者 Jianping Wu Baichuan Ding Qianhui Liu Guangshen Jiang Qiongqiong Lu Jiangan Wang Fei Xu Hongqiang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期416-422,共7页
Onedimensional porous carbons bearing high surface areas and sufficient heteroatom doped functionalities are essential for advanced electrochemical energy storage devices,especially for developing freestanding film el... Onedimensional porous carbons bearing high surface areas and sufficient heteroatom doped functionalities are essential for advanced electrochemical energy storage devices,especially for developing freestanding film electrodes.Here we develop a porous,nitrogenenriched,freestanding hollow carbon nanofiber(PNFHCF)electrode material via filtration of polypyrrole(PPy)hollow nanofibers formed by in situ selfdegraded templateassisted strategy,followed by NH3assisted carbonization.The PNFHCF retains the freestanding film morphology that is composed of threedimensional networks from the entanglement of 1D nanofiber and delivers 3.7fold increase in specific surface area(592 m^(2)g^(-1))compared to the carbon without NH_(3)treatment(FHCF).In spite of the enhanced specific surface area,PNFHCF still exhibits comparable high content of surface N functionalities(8.8%,atom fraction)to FHCF.Such developed hierarchical porous structure without sacrificing N doping functionalities together enables the achievement of high capacity,highrate property and good cycling stability when applied as selfsupporting anode in lithiumion batteries,superior to those of FHCF without NH3 treatment. 展开更多
关键词 Energy ELECTROCHEMISTRY NANOMATERIALS Hollow carbon nanofibers Freestanding electrode Lithium-ion batteries
下载PDF
Hierarchical structured CoP nanosheets/carbon nanofibers bifunctional eletrocatalyst for high-efficient overall water splitting 被引量:3
10
作者 Xiao-Qiao Xie Junpeng Liu +3 位作者 Chaonan Gu Jingjing Li Yan Zhao Chun-Sen Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期503-510,I0013,共9页
The design of efficient,stable,and economical electrocatalysts for oxygen and hydrogen evolution reaction(OER and HER)is a major challenge for overall water splitting.Herein,a hierarchical structured CoP/carbon nanofi... The design of efficient,stable,and economical electrocatalysts for oxygen and hydrogen evolution reaction(OER and HER)is a major challenge for overall water splitting.Herein,a hierarchical structured CoP/carbon nanofibers(CNFs)composite was successfully synthesized and its potential application as a high-efficiency bifunctional electrocatalyst for overall splitting water was evaluated.The synergetic effect of two-dimensional(2D)CoP nanosheets and on e-dimensi on al(1D)CNFs endowed the CoP/CNFs composites with abundant active sites and rapid electron and mass transport pathways,and thereby significantly improved the electrocatalytic performances.The optimized CoP/CNFs delivered a current density of 10 mA cm^(-2) at low overpotential of 325 mV for OER and 225 mV for HER.In the overall water splitting,CoP/CNFs achieved a low potential of 1.65 V at 10 mA cm^(-2).The facile strategy provided in the present work can facilitate the design and development of multifunctional non-noble metal catalysts for energy applications. 展开更多
关键词 Bifunctional electrocatalyst Overall splitting water Electrospun carbon nanofibers CoP nanosheets Non-noble metal catalysts
下载PDF
Platelet carbon nanofibers as support of Pt-CoO electrocatalyst for superior hydrogen evolution 被引量:2
11
作者 Jie Gan Zikun Huang +5 位作者 Wei Luo Wenyao Chen Yueqiang Cao Gang Qian Xinggui Zhou Xuezhi Duan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期33-40,I0002,共9页
Exploration of cost-effective Pt/C catalysts has been a significant issue for electrochemical hydrogen evolution reaction(HER) toward sustainable energy conversion and storage.Herein,we report a fabrication strategy b... Exploration of cost-effective Pt/C catalysts has been a significant issue for electrochemical hydrogen evolution reaction(HER) toward sustainable energy conversion and storage.Herein,we report a fabrication strategy by employing platelet carbon nanofibers(p-CNF) as the support to immobilize Pt-CoO HER electrocatalyst using atomic layer deposition method.The edge-rich p-CNF support is found to act as the anchoring sites of Pt nanoparticles and favorably capture electrons from Pt to yield electron-deficient Pt surfaces for the boosted HER.Additionally,the sequential growth of CoO onto the Pt/p-CNF catalyst elaborately constructs the Pt-CoO interface and facilitates the electron transfer from Pt to CoO,which further enhances the HER activity.These advantages endow the fabricated Pt-CoO/p-CNF catalyst with the superior HER activity,e.g.,a very low overpotential of 26 mV at the current density of 10 mA·cm-2 and a mass activity of 4.42 A·mgPt-1at the overpotential of 30 mV,18.8 times higher than that of the commercial20 wt% Pt/C catalyst.The insights reported here could shed light on for the fabrication of cost-effective Pt-based composite HER catalysts. 展开更多
关键词 Hydrogen evolution ELECTROCATALYSTS Platelet carbon nanofibers Pt-CoO catalyst Atomic layer deposition
下载PDF
CO_x-Free Hydrogen and Carbon Nanofibers Produced from Direct Decomposition of Methane on Nickel-Based Catalysts 被引量:2
12
作者 Siang-Piao Chai Sharif Hussein Sharif Zein Abdul Rahman Mohamed 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期253-258,共6页
Direct decomposition of methane was carried out using a fixed-bed reactor at 700 ℃ for the production of COx-free hydrogen and carbon nanofibers. The catalytic performance of NiO-M/SiO2 catalysts (where M=AgO, CoO, ... Direct decomposition of methane was carried out using a fixed-bed reactor at 700 ℃ for the production of COx-free hydrogen and carbon nanofibers. The catalytic performance of NiO-M/SiO2 catalysts (where M=AgO, CoO, CuO, FeO, MnOx and MoO) in methane decomposition was investigated. The experimental results indicate that among the tested catalysts, NiO/SiO2 promoted with CuO give the highest hydrogen yield. In addition, the examination of the most suitable catalyst support, including Al2O3, CeO2, La2O3, SiO2, and TiO2, shows that the decomposition of methane over NiO-CuO favors SiOx support. Furthermore, the optimum ratio of NiO to CuO on SiO2 support for methane decomposition was determined. The experimental results show that the optimum weight ratio of NiO to CuO fell at 8:2 (w/w) since the highest yield of hydrogen was obtained over this catalyst. 展开更多
关键词 methane decomposition HYDROGEN carbon nanofibers supported catalyst
下载PDF
VN nanoparticle-assembled hollow microspheres/N-doped carbon nanofibers:An anode material for superior potassium storage 被引量:2
13
作者 Ya Ru Pei Ming Zhao +2 位作者 Yu Peng Zhu Chun Cheng Yang Qing Jiang 《Nano Materials Science》 EI CAS CSCD 2022年第2期104-112,共9页
Thanks to inexpensive and bountiful potassium resources,potassium ion batteries(PIBs)have come into the spotlight as viable alternatives for next-generation battery systems.However,poor electrochemical kinetics due to... Thanks to inexpensive and bountiful potassium resources,potassium ion batteries(PIBs)have come into the spotlight as viable alternatives for next-generation battery systems.However,poor electrochemical kinetics due to the large size of the K^(+) is a major challenge for PIB anodes.In this paper,an ingenious design of VN nanoparticleassembled hollow microspheres within N-containing intertwined carbon nanofibers(VN-NPs/N-CNFs)via an electrospinning process is reported.Employed as PIB anodes,VN-NPs/N-CNFs exhibit a superb rate property and prolonged cyclability,surpassing that of other reported metal nitride-based anodes.This is ascribed to:(i)the VN NP-assembled hollow microspheres,which shorten the K^(+) diffusion distance,and mitigate volume expansion;and(ii)the interconnected N-CNFs,which supply numerous active sites for K^(+) adsorption and facilitate rapid electron/ion transport. 展开更多
关键词 Potassium-ion batteries VN nanoparticles N-doped carbon nanofibers Hollow microspheres
下载PDF
Creation of surface defects on carbon nanofibers by steam treatment 被引量:1
14
作者 Zhengfeng Shao Min Pang +2 位作者 Wei Xia Martin Muhler Changhai Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期804-810,共7页
A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on ... A direct strategy for the creation of defects on carbon nanofibers (CNFs) has been developed by steam treatment.Nitrogen physisorption,XRD,Raman spectra,SEM and TEM analyses proved the existence of the new defects on CNFs.BET surface area of CNFs after steam treatment was enhanced from 20 to 378 m2/g.Pd catalysts supported on CNFs were also prepared by colloidal deposition method.The different activity of Pd/CNFs catalysts in the partial hydrogenation of phenylacetylene further demonstrated the diverse surfaces of CNFs could be formed by steam treatment. 展开更多
关键词 carbon nanofibers surface defects steam treatment PALLADIUM
下载PDF
N‐doped porous carbon nanofibers inlaid with hollow Co_(3)O_(4) nanoparticles as an efficient bifunctional catalyst for rechargeable Li‐O_(2) batteries 被引量:1
15
作者 Hongbin Chen Yaqian Ye +4 位作者 Xinzhi Chen Lili Zhang Guoxue Liu Suqing Wang Liang‐Xin Ding 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第6期1511-1519,共9页
Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performanc... Stable and high‐efficiency bifunctional catalysts for the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)are desired for the practical application of Li‐O_(2)batteries with excellent rate performance and cycle stability.Herein,a novel hybrid bifunctional catalyst with carbon nanofibers inlaid with hollow Co_(3)O_(4)nanoparticles and separate active sites for ORR and OER were prepared and applied in Li‐O_(2)batteries.Benefiting from the synergistic effect of unique porous structural features and high electrocatalytic activity of hollow Co3O4 intimately bound to N‐doped carbon nanofibers,the assembled Li‐O_(2)batteries with novel catalyst exhibited high specific capacity,excellent rate capability,and cycle stability up to 150 cycles under a capacity limitation of 500 mAh g^(–1)at a current density of 100 mA g^(–1).The facile synthesis and preliminary results in this work show the as‐prepared catalyst as a promising bifunctional electrocatalyst for applications in metal‐air batteries,fuel cells,and electrocatalysis. 展开更多
关键词 Li‐O_(2)batteries Bifunctional catalyst Co_(3)O_(4) N‐doped carbon nanofibers Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Synthesis of carbon nanofibers by ethanol catalytic combustion technique 被引量:1
16
作者 李飞 邹小平 +4 位作者 程进 张红丹 任鹏飞 王茂发 朱光 《Journal of Central South University of Technology》 EI 2008年第1期15-19,共5页
A general, simple and economic synthetic method for synthesizing carbon nanofibers was presented. In the method, ethanol was employed as carbon source; metal salts such as nickel nitrate, ferric nitrate and ferric chl... A general, simple and economic synthetic method for synthesizing carbon nanofibers was presented. In the method, ethanol was employed as carbon source; metal salts such as nickel nitrate, ferric nitrate and ferric chloride were used as catalyst precursor respectively; copper plate was employed as the support material. A lot of products were obtained by catalytic combustion deposition of ethanol vapor. Then the as-prepared carbon nanofibers were characterized by field-emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, energy dispersion X-ray spectroscopy and selected-area electron diffractometry. By analyzing the results of characterization, the conclusions are as follows: 1) the large catalyst particles tend to form large-diameter CNFs, small catalyst particles are inclinable to form small-diameter CNFs; 2) the morphology of the catalyst can affect the final morphology of the CNFs. Moreover, the possible growth mechanisms were proposed and the degree of graphitization of samples was estimated by Raman spectroscopy characterization. 展开更多
关键词 SYNTHESIS ethanol catalytic combustion carbon nanofibers growth mechanism degree of graphitization
下载PDF
Immobilizing polysulfide jointly via chemical absorbing and physical blocking in polytungstates-embedded carbon nanofibers
17
作者 Yanmei Nie Lei Tan +3 位作者 Guangchao Li Sanghao Li Jun Yan Jiexi Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期206-211,I0006,共7页
Lithium-sulfur(Li-S) battery is regarded as one of the most fascinating candidates for energy storage due to its dominant advantage of high energy density.However,the shuttling effect of soluble polysulfides and low e... Lithium-sulfur(Li-S) battery is regarded as one of the most fascinating candidates for energy storage due to its dominant advantage of high energy density.However,the shuttling effect of soluble polysulfides and low electrical conductivity of sulfur and Li_(2)S still hinder its commercialization.In this work,high electrical-conductive carbon nanofibers(CNFs) with uniformly embedded polytungstates(HPW@CNFs) are proposed for advanced Li-S batteries.H_(3)PW_(12)O_(40)(HPW) is a kind of molecular nano-sized metal cluster which contains rich Lewis acid/base sites that can stabilize polysulfide effectively through chemical bonding,while CNFs play the role of physical barriers for polysulfides and transmission channel for electrons.The HPW@CNFs/S cathode shows an ultra-stable cycling performance with extremely small decay rate of 0.015% per cycle over 400 cycles at 0.5 C. 展开更多
关键词 Lithium-sulfur batteries POLYSULFIDES POLYOXOMETALATES carbon nanofibers
下载PDF
Comparison of growth mechanisms of undoped and nitrogen-doped carbon nanofibers on nickel-containing catalysts
18
作者 Vladimir V.Chesnokov Olga Yu.Podyacheva +3 位作者 Alexander N.Shmakov Lidiya S.Kibis Andrei I.Boronin Zinfer R.Ismagilov 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第1期169-176,共8页
The growth mechanisms of carbon nanofibers on Ni catalysts and nitrogen-doped carbon nanofibers on Ni and Ni-Cu catalysts were studied.The growth of both types of nanofibers was found to occur by a mechanism that incl... The growth mechanisms of carbon nanofibers on Ni catalysts and nitrogen-doped carbon nanofibers on Ni and Ni-Cu catalysts were studied.The growth of both types of nanofibers was found to occur by a mechanism that included the formation of surface non-stoichiometric nickel carbide followed by the dissolution and diffusion of carbon,or carbon and nitrogen into the bulk of the catalyst particles. 展开更多
关键词 carbon nanofibers Nitrogen doping Growth mechanism Nickel-based catalyst
下载PDF
MnO_(2) nanosheet modified N, P co-doping carbon nanofibers on carbon cloth as lithiophilic host to construct high-performance anodes for Li metal batteries
19
作者 Xiaoqiang Liu Qian Zhang +6 位作者 Yiru Ma Zhenzhen Chi Huixiang Yin Jie Liu Junfei Huang Ziyang Guo Lei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期270-281,I0008,共13页
Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dend... Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dendritic Li formation,dramatical volume variation and serious pulverization.Herein,manganese dioxide (MnO_(2)) nanosheet modified nitrogen (N),phosphorus (P) co-doping carbon nanofibers(NPC) on carbon cloth (CC)(MnO_(2)@NPC-CC) is successfully fabricated through electrodeposition approach and further treated with Li by the molten-infusion method to prepare Li based Mn@NPC-CC(Li-Mn@NPC-CC) electrode.The synergy of MnO_(2) and NPC obviously increases the reaction rate between MnO_(2)@NPC-CC and Li and guides even Li distribution over infusion process.Additionally,theoretical calculation,simulation and experimental results further indicate that N,P,Mn multi-doping effectively improves the superior lithiophilicity of Li-Mn@NPC-CC,which induces uniform Li deposition/dissolution to suppress dendrite growth over cycles.Moreover,conductive and porous NPC matrix not only effectively improves the stability of Li-Mn@NPC-CC,but also provides abundant spaces to accelerate the transfer of ion/electron and buffer electrode dimension variation during cycling.Hence,Li-Mn@NPC-CC-based symmetric cells exhibit extra-long cycling life (over 2200 h) with small hysteresis of 20 mV.When the LiMn@NPC-CC anode couples with air,Li iron phosphate (LiFePO_(4)),or hard carbon (C) cathode,the assembled full cells exhibit outstanding performance with low hysteresis and stable cycling properties.Especially,the corresponding pouch-typed Li–air cells also exhibit good performance at different bending angles and even power a series of electronic devices. 展开更多
关键词 N P co-doped carbon nanofibers on carbon cloth MnO_(2)nanosheet coating Molten-infusion method Li metal anodes Li metal batteries
下载PDF
Conductive Behaviors of Carbon Nanofibers Reinforced Epoxy Composites
20
作者 梅启林 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期139-142,共4页
By means of ultrasonic dispersion, carbon nanofibers reinforced epoxy resin composite was prepared in the lab, the electrical conductivity of composite with different carbon nanofibers loadings were studied, also the ... By means of ultrasonic dispersion, carbon nanofibers reinforced epoxy resin composite was prepared in the lab, the electrical conductivity of composite with different carbon nanofibers loadings were studied, also the voltage-current relationship, resistance-temperature properties and mechano-electric effect were investigated. Results show that the resistivity of composite decreases in geometric progression with the increasing of carbon nanofibers, and the threshold ranges between 0.1 wt%-0.2 wt%. The voltage-current relationship is in good conformity with the Ohm's law, both positive temperature coefficient and negative temperature coefficient can be found at elevated temperature. In the course of stretching, the electrical resistance of the composites increases with the stress steadily and changes sharply near the breaking point, which is of importance for the safety monitor and structure health diagnosis. 展开更多
关键词 carbon nanofibers positive temperature coefficient negative temperature coefficient mechano-electric effect
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部