Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement,motion detection and voice recognition.In recent years,many significant improvements had been made to ...Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement,motion detection and voice recognition.In recent years,many significant improvements had been made to enhance the sensor’s performance including sensitivity,flexibility and repeatability.However,it is still extremely complicated and difficult to prepare a patterned sensor directly on a flexible substrate.Herein,inspired by typography,a lowcost,environmentally friendly stamping method for the mass production of transparent conductive carbon nanotube(CNT)film is proposed.In this dry transfer strategy,a porous CNT block was used as both the seal and the ink;and Ecoflex film was served as an object substrate.Welldesigned CNT patterns can be easily fabricated on the polymer substrate by engraving the target pattern on the CNT seal before the stamping process.Moreover,the CNT film can be directly used to fabricate ultrathin(300μm)strain sensor.This strain sensor possesses high sensitivity with a gauge factor(GF)up to 9960 at 85%strain,high stretchability(>200%)and repeatability(>5000 cycles).It has been used to measure pulse signals and detect joint motion,suggesting promising application prospects in flexible and wearable electronic devices.展开更多
Carbon nanotubes prepared by catalytic chemical vapor deposition of hydrocarbon at 650℃ show good adsorption capability of Pb 2+ , Cu 2+ and Cd 2+ ions from aqueous solution after oxidized with concentr...Carbon nanotubes prepared by catalytic chemical vapor deposition of hydrocarbon at 650℃ show good adsorption capability of Pb 2+ , Cu 2+ and Cd 2+ ions from aqueous solution after oxidized with concentrated nitric acid at 140℃ for 1 h. The specific surface area and particle size distribution of the as-grown and oxidized CNTs were studied by BET method and laser particle analyzer. Three kinetic models, that is, first-, pseudo second- and second-order, were used to investigate the adsorption data and the pseudo second-order model can represent the experimental data better than two others. The equilibrium data fitted well with the Langmuir model and showed the following adsorption order: Pb 2+ >Cu 2+ >Cd 2+ .展开更多
Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization proce...Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are preserved for both the monothetic glass and its glass composite. Adding CNTs in to the glass matrix reduces the influence of the heating rate on the crystallization process. In addition, the CNTs increase the energetic barrier for the glass transition. This results in the decrease of GFA. The mechanism of the GFA decrease was also discussed.展开更多
By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies o...By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.展开更多
The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indica...The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.展开更多
Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nan...Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nanotubes(FA-Co NTs) were hydrothermally prepared as sacrificial templates for highly porous Co and N co-doped carbon nanotubes(Co-N/CNTs) with well-controlled size and morphology.The formation mechanism of FA-Co NTs was investigated and FA-Co-hydrazine coordination interaction together with the H-bond interaction between FA molecules was characterized to be the driving force for growth of one-dimensional nanotubes.Such distinct metal-ligand interaction afforded the resultant CNTs rich Co-N_x sites,hierarchically porous structure and Co nanoparticle-embedded conductive network,thus an overall good electrocatalytic activity for oxygen reduction.Electrochemical tests showed that Co-N/CNTs-900 promoted an efficient 4 e ORR process with an onset potential of 0.908 V vs.RHE,a limiting current density of 5.66 mA cm^(-2) at 0.6 V and a H_2 O_2 yield lower than 5%,comparable to that of 20%Pt/C catalyst.Moreover,the catalyst revealed very high stability upon continuous operation and remarkable tolerance to methanol.展开更多
Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation en...Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices.展开更多
A parallel method for the fabrication of metal contacts on single-walled carbon nanotube(SWNT)arrays was presented and the electrical contact property was evaluated by a SWNT-field effect transistor structure. Copper ...A parallel method for the fabrication of metal contacts on single-walled carbon nanotube(SWNT)arrays was presented and the electrical contact property was evaluated by a SWNT-field effect transistor structure. Copper and gold contacts were fabricated on both semiconducting SWNTs and metallic SWNTs by using a maskless electrodeposition process. The SWNT array remained a p-type semiconductor after the electrodeposition. The contact resistance between SWNT array and microelectrodes was reduced more than 50% by the established copper contacts. The source-drain current of the carbon nanotube field-effect transistor(CNT-FET)structure can be further increased from 7.9 μA to 9.2 μA when the copper contacts were replaced by gold ones,which is probably due to the better contact property to SWNT of gold contacts with fine grain size.展开更多
Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual app...Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual application of alkali metal anodes is impeded by the challenges of alkali metals,including their high chemical reactivity,uncontrolled dendrite growth,unstable solid electrolyte interphase,and infinite volume expansion during cycling processes.Introducing carbon nanotube-based nanomaterials in alkali metal anodesis an effective solution to these issues.These nanomaterials have attracted widespread attention owing to their unique properties,such as their high specific surface area,superior electronic conductivity,and excellent mechanical stability.Considering the rapidly growing research enthusiasm for this topic in the last several years,we review recent progress on the application of carbon nanotube-based nanomaterials in stable and dendrite-free alkali metal anodes.The merits and issues of alkali metal anodes,as well as their stabilizing strategies are summarized.Furthermore,the relationships among methods of synthesis,nano-or microstructures,and electrochemical properties of carbon nanotube-based alkali metal anodes are systematically discussed.In addition,advanced characterization technologies on the reaction mechanism of carbon nanotube-based nanomaterials in alkali metal anodes are also reviewed.Finally,the challenges and prospects for future study and applications of carbon nanotube-based AMAs in high-performance alkali metal batteries are discussed.展开更多
The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples ...The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples based on preconcentration with mini-column packed with MWNTs prior to its determination by flame atomic absorption spectrometry (FAAS) The recommended parameters of proposed method influencing the preconcentration of the analytes, such as pH of the sample, sample flow rate and volume, elute solution and interfering ions, have been used. Under the optimized conditions, the calibration graphs were linear with the correlation coefficient range 0.9981-0.9995. According to the results, the metals were found 0.019-0.051, 0.011-0.031, 0.00-0.081, 0.00-0.0002, 0.007-0.0925, 0.00-0.0104 μg/L in water samples for Pb, Mn, Zn, Cd, Fe, Cu respectively. The percentage relative standard deviation (%RSD) for five replicate samples were 〈 5% in all cases. The method has been successfully applied to the determination of trace elements in some environmental samples with satisfactory results.展开更多
Surface functionalization of suspended single-walled carbon nanotubes(SWNTs) using metal(Au) nanoparticles(NPs) is reported.SWNTs are grown on three-dimensionally patterned substrates by thermal chemical vapor deposit...Surface functionalization of suspended single-walled carbon nanotubes(SWNTs) using metal(Au) nanoparticles(NPs) is reported.SWNTs are grown on three-dimensionally patterned substrates by thermal chemical vapor deposition and successfully functionalized with Au NPs.Ethylendiamine is mainly used to functionalize SWNTs surface with amino groups before introducing Au NPs.From Raman scattering spectroscopy of the Au-functionalized suspended SWNTs,enhanced Raman scattering properties are obtained.The results suggest that the attached Au NPs may contribute to the enhancement of resonant phenomena.By measuring the electric properties after each functionalization process,it is found that Au NPs act as electron acceptor to the amine functionalized SWNTs.展开更多
Two kinds of metal-PTFE multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene(PTFE) filled by carbon nanotubes(CNTs)...Two kinds of metal-PTFE multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene(PTFE) filled by carbon nanotubes(CNTs) or not, were prepared. The wear properties of metal-PTFE multilayer composites oscillating against 45 carbon steel under dry condition were evaluated on an oscillating wear tester, and the effect of CNTs on wear behaviour of metal-PTFE multilayer composites was studied. The results showed that the worn surface of metal-PTFE multilayer composites was characterized by adhesive wear, abrasive wear and fatigue wear. The CNTs greatly increased the adhesion strength of PTFE in the metal-PTFE composites and thereby greatly reduced puck, ploughing, and fatigue failure of PTFE during wearing. The PTFE filled with CNTs prevented direct contact between the mating surfaces and served as fine self-lubricating film, in which the oscillating wear mechanism of the composites was changed to a slightly adhesive wear. Therefore, the CNTs significantly decreased the weight loss and obviously increased the wear resistance of metal-PTFE multilayer composites.展开更多
Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Tempe...Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.展开更多
In the framework of the tight-binding model, the excitons states and linear absorption spectra are calculated in the metallic single-walled carbon nanotubes, with the axial magnetic field applied. From our calculation...In the framework of the tight-binding model, the excitons states and linear absorption spectra are calculated in the metallic single-walled carbon nanotubes, with the axial magnetic field applied. From our calculations, it is found that for the Mll and M22 transitions, the exeiton states are split into four separate column states by the applied magnetic field due to the symmetry breaking. More interesting is that the splitting can be directly reflected from the linear absorption spectra~ which are dominated by four main absorption peaks. In addition, the splitting with increasing the axial magnetic field is also calculated, which increases linearly with the applied magnetic field. The obtained results are expected to be detected by the future experiments.展开更多
This work uses the molecular dynamics approach to study the effects of functionalization of carbon nanotubes(CNTs)on the mechanical properties of Cu64Zr36 metallic glass(MG).Three types of functional groups,carboxylic...This work uses the molecular dynamics approach to study the effects of functionalization of carbon nanotubes(CNTs)on the mechanical properties of Cu64Zr36 metallic glass(MG).Three types of functional groups,carboxylic,vinyl and ester were used.The effect of CNT volume fraction(Vf)and the number of functional groups attached to CNT,on the mechanical properties and thermal conductivity of CNT-MG composites was analysed using Biovia Materials Studio.At lower values of Vf(from 0 to 5%),the percentage increase in Young’s modulus was approximately 66%.As the value of Vf was increased further(from 5 to 12%),the rate of increase in Young’s modulus was reduced to 16%.The thermal conductivity was found to increase from 1.52 W/mK at Vf?0%to 5.88 W/mK at Vf?12%,thus giving an increase of approximately 286%.Functionalization of SWCNT reduced the thermal conductivity of the SWCNT-MG composites.展开更多
In this work, we present a study of growth and characterization of nanocomposites, based on multiwalled carbon nanotubes and metal nanoparticles (Al, Ag, Au, Co, Cu, Fe, Ni and Ti). We observe a very different behavio...In this work, we present a study of growth and characterization of nanocomposites, based on multiwalled carbon nanotubes and metal nanoparticles (Al, Ag, Au, Co, Cu, Fe, Ni and Ti). We observe a very different behavior between noble and transitions metals. All the nanocomposites are characterized by a network of carbon nanotubes with randomly insertion of spherical metal particles with dimensions of about 100 nm (clearly visible in SEM images). In particular, in transition metal nanocomposites, each tube on sheet surface is covered by particles of about 40 - 50 nm and for all metals the XPS measurements indicate the absence of chemical bonds and the simply physisorption of nanoparticle on carbon nanotube buckypaper. Furthermore, the nanocomposites show very different properties respect to pure carbon nanotubes: they are hydrophobic, their roughness is about 50% smaller than carbon nanotube and they exhibit a strong visible photoluminescence, which is absent in pure nanotube.展开更多
Recently, Hsieh and Horng [1] published the paper entitled as above. In section 3 results and discussion, the authors mentioned the first and the second order kinetic models without any quotations. In fact these two k...Recently, Hsieh and Horng [1] published the paper entitled as above. In section 3 results and discussion, the authors mentioned the first and the second order kinetic models without any quotations. In fact these two kinetic models have been published [2-5]. In order to distinguish a kinetics model based on the ad- sorption capacity of a solid from the one based on the concentration of a solution, Lagergren's first-order rate equation has been called pseudo-first-order [6-7]. The Lagergren's equation has been widely cited, but there are far more mistakes made in the quotation and in the reference section of papers, including the title, the author's name, journal title, year of publishing, volume, and page number [3]. In addition, the second order kinetic expression for the adsorption systems of divalent metal ions using sphagnum moss peat has been reported by Ho [8].展开更多
A metal-free catalytic system combining oxidized carbon nanotubes (oCNTs) and ionic liquids (ILs) is presented for the oxidation of aromatic thiophene compounds with H2O2 as an oxidant. The oCNTs exhibit impressively ...A metal-free catalytic system combining oxidized carbon nanotubes (oCNTs) and ionic liquids (ILs) is presented for the oxidation of aromatic thiophene compounds with H2O2 as an oxidant. The oCNTs exhibit impressively high activity and stability in the system, which show an even better performance than those of some reported metal catalysts. The ILs are proved to have indispensable influence on the enhanced catalytic performance of the oCNTs. Detailed characterization by TG-MS and XPS demonstrates that the carbonyl groups are the active sites for the oxidation process, which is further supported by the deactivation and the model catalysts experiments. The quantitative analysis of different oxygen groups in oCNTs could be achieved by an isothermal temperature programmed TG-MS method. The concentration of carbonyl groups is 1.46 mmol per 1 g oCNTs and the tuiriover frequency of oCNTs could also be obtained (10.7 h^-1 in the presence of OmimPF6). H2O2 decomposition experiments combined with the EPR results reveal that the presence of OmimPF6 can avoid the intermediate HO· to form O2 and then improve the catalytic performance of oCNTs for the oxidation of dibenzothiophene.展开更多
Finding half-metallic behavior in one-dimensional structure is a challenge for technological applications at the nanometer scale.In the present work,the investigation was performed on the structural,electronic,and mag...Finding half-metallic behavior in one-dimensional structure is a challenge for technological applications at the nanometer scale.In the present work,the investigation was performed on the structural,electronic,and magnetic properties of encapsulated zigzag carbon nanotube (CNT) with various sizes by the NO,NO2,and O2 molecules using spin-polarized density functional theory (DFT).It was found that the encapsulations of the three molecules inside the CNT are energetically favorable.The calculated adsorption energies are strongly dependent on the tube diameter and the orientation between the encapsulated molecules and tube axis,while the structures of both CNTs and encapsulated molecules are nearly unchanged.Interestingly,the encapsulated CNTs by the three molecules exhibit half-metallicty in terms of the opposite local gating effect of the spin states.展开更多
Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper p...Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites.展开更多
基金financially supported by National Natural Science Foundation of China(Grant No.51772335)Guangdong Youth Top-notch Talent Support Program(No.2015TQ01C201)the Fundamental Research Funds for the Central Universities.
文摘Flexible and wearable sensing devices have broad application prospects in bio-monitoring such as pulse measurement,motion detection and voice recognition.In recent years,many significant improvements had been made to enhance the sensor’s performance including sensitivity,flexibility and repeatability.However,it is still extremely complicated and difficult to prepare a patterned sensor directly on a flexible substrate.Herein,inspired by typography,a lowcost,environmentally friendly stamping method for the mass production of transparent conductive carbon nanotube(CNT)film is proposed.In this dry transfer strategy,a porous CNT block was used as both the seal and the ink;and Ecoflex film was served as an object substrate.Welldesigned CNT patterns can be easily fabricated on the polymer substrate by engraving the target pattern on the CNT seal before the stamping process.Moreover,the CNT film can be directly used to fabricate ultrathin(300μm)strain sensor.This strain sensor possesses high sensitivity with a gauge factor(GF)up to 9960 at 85%strain,high stretchability(>200%)and repeatability(>5000 cycles).It has been used to measure pulse signals and detect joint motion,suggesting promising application prospects in flexible and wearable electronic devices.
文摘Carbon nanotubes prepared by catalytic chemical vapor deposition of hydrocarbon at 650℃ show good adsorption capability of Pb 2+ , Cu 2+ and Cd 2+ ions from aqueous solution after oxidized with concentrated nitric acid at 140℃ for 1 h. The specific surface area and particle size distribution of the as-grown and oxidized CNTs were studied by BET method and laser particle analyzer. Three kinetic models, that is, first-, pseudo second- and second-order, were used to investigate the adsorption data and the pseudo second-order model can represent the experimental data better than two others. The equilibrium data fitted well with the Langmuir model and showed the following adsorption order: Pb 2+ >Cu 2+ >Cd 2+ .
文摘Mg65Cu25Gd10 bulk metallic glass and its carbon nanotube reinforced composite were prepared. Differential scanning calorimeter (DSC) was used to investigate the kinetics of glass transition and crystallization processes. The influence of CNTs addition to the glass matrix on the glass transition and crystallization kinetics was studied. It is shown that the kinetic effect on glass transition and crystallization are preserved for both the monothetic glass and its glass composite. Adding CNTs in to the glass matrix reduces the influence of the heating rate on the crystallization process. In addition, the CNTs increase the energetic barrier for the glass transition. This results in the decrease of GFA. The mechanism of the GFA decrease was also discussed.
基金supported by the Major Research Plan from the Ministry of Science and Technology of China (Grant No. 2011CB921900)the China Postdoctoral Science Special Foundation (Grant No. 201003009)+2 种基金the China Postdoctoral Science Foundation (GrantNo. 20090460145)the Fundamental Research Funds for the Central Universities (Grant No. 201012200053)the Science and Technology Program of Hunan Province of China (Grant No. 2010DFJ411)
文摘By using the first-principles calculations, the electronic Structure and quantum transport properties of metallic carbon nanotubes with B/N pairs co-doping have been investigated. It is shown that the total energies of metallic carbon nanotubes are sensitive to the doping sites of the B/N pairs. The energy gaps of the doped metallic carbon nanotubes decrease with decreasing the concentration of the B/N pair not only along the tube axis but also around the tube. Moreover, the I-V characteristics and transmissions of the doped tubes are studied. Our results reveal that the conducting ability of the doped tube decreases with increasing the concentrations of the B/N pairs due to symmetry breaking of the system. This fact opens a new way to modulate band structures of metallic carbon nanotubes by doping B/N pair with suitable concentration and the novel characteristics are potentially useful in future applications.
基金Project supported by the Key Program of the National Natural Science Foundation of China(Grant Nos.21031001 and U1034003)the National Natural Science Foundation of China(Grant Nos.20971040 and 21173072)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China(Grant No.708029)
文摘The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties.
基金supported by the National Natural Science Foundation of China (Nos. 51902204, 21975163)the Bureau of Industry and Information Technology of Shenzhen (No. 201901171518)the support provided by Instrumental Analysis Center of Shenzhen University (Xili Campus)。
文摘Biomolecules with a broad range of structure and heteroatom-containing groups offer a great opportunity for rational design of promising electrocatalysts via versatile chemistry.In this study,uniform folic acid-Co nanotubes(FA-Co NTs) were hydrothermally prepared as sacrificial templates for highly porous Co and N co-doped carbon nanotubes(Co-N/CNTs) with well-controlled size and morphology.The formation mechanism of FA-Co NTs was investigated and FA-Co-hydrazine coordination interaction together with the H-bond interaction between FA molecules was characterized to be the driving force for growth of one-dimensional nanotubes.Such distinct metal-ligand interaction afforded the resultant CNTs rich Co-N_x sites,hierarchically porous structure and Co nanoparticle-embedded conductive network,thus an overall good electrocatalytic activity for oxygen reduction.Electrochemical tests showed that Co-N/CNTs-900 promoted an efficient 4 e ORR process with an onset potential of 0.908 V vs.RHE,a limiting current density of 5.66 mA cm^(-2) at 0.6 V and a H_2 O_2 yield lower than 5%,comparable to that of 20%Pt/C catalyst.Moreover,the catalyst revealed very high stability upon continuous operation and remarkable tolerance to methanol.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10325415 and 50504017)the Natural Science Foundation of Hunan Province,China(Grant No.07JJ3102)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.10C1171)the Science Development Foundation of Central South University,China(Grant Nos.08SDF02 and 09SDF09)
文摘Using the first-principles calculations, we investigate the electronic band structure and the quantum transport properties of metallic carbon nanotubes (MCNTs) with B/N pair co-doping. The results about formation energy show that the B/N pair co-doping configuration is a most stable structure. We find that the electronic structure and the transport properties are very sensitive to the doping concentration of the B/N pairs in MCNTs, where the energy gaps increase with doping concentration increasing both along the tube axis and around the tube, because the mirror symmetry of MCNT is broken by doping B/N pairs. In addition, we discuss conductance dips of the transmission spectrum of doped MCNTs. These unconventional doping effects could be used to design novel nanoelectronic devices.
基金supported by Shenzhen Key Laboratory of LED Packaging (No: ZDSY20120619141243215)
文摘A parallel method for the fabrication of metal contacts on single-walled carbon nanotube(SWNT)arrays was presented and the electrical contact property was evaluated by a SWNT-field effect transistor structure. Copper and gold contacts were fabricated on both semiconducting SWNTs and metallic SWNTs by using a maskless electrodeposition process. The SWNT array remained a p-type semiconductor after the electrodeposition. The contact resistance between SWNT array and microelectrodes was reduced more than 50% by the established copper contacts. The source-drain current of the carbon nanotube field-effect transistor(CNT-FET)structure can be further increased from 7.9 μA to 9.2 μA when the copper contacts were replaced by gold ones,which is probably due to the better contact property to SWNT of gold contacts with fine grain size.
基金supported by the National Key Research and Development Program of China(2020YFB1713500)the Chinese 02 Special Fund(2017ZX02408003)+1 种基金Open Fund of State Key Laboratory of Advanced Refractories(SKLAR202210)the Foundation of Department of Science and Technology of Henan Province(212102210219).
文摘Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual application of alkali metal anodes is impeded by the challenges of alkali metals,including their high chemical reactivity,uncontrolled dendrite growth,unstable solid electrolyte interphase,and infinite volume expansion during cycling processes.Introducing carbon nanotube-based nanomaterials in alkali metal anodesis an effective solution to these issues.These nanomaterials have attracted widespread attention owing to their unique properties,such as their high specific surface area,superior electronic conductivity,and excellent mechanical stability.Considering the rapidly growing research enthusiasm for this topic in the last several years,we review recent progress on the application of carbon nanotube-based nanomaterials in stable and dendrite-free alkali metal anodes.The merits and issues of alkali metal anodes,as well as their stabilizing strategies are summarized.Furthermore,the relationships among methods of synthesis,nano-or microstructures,and electrochemical properties of carbon nanotube-based alkali metal anodes are systematically discussed.In addition,advanced characterization technologies on the reaction mechanism of carbon nanotube-based nanomaterials in alkali metal anodes are also reviewed.Finally,the challenges and prospects for future study and applications of carbon nanotube-based AMAs in high-performance alkali metal batteries are discussed.
文摘The adsorption behavior of multiwalled carbon nanotubes (MWNTs) toward heavy elements has been investigated systemically, and a new method has been developed for the determination of trace elements in water samples based on preconcentration with mini-column packed with MWNTs prior to its determination by flame atomic absorption spectrometry (FAAS) The recommended parameters of proposed method influencing the preconcentration of the analytes, such as pH of the sample, sample flow rate and volume, elute solution and interfering ions, have been used. Under the optimized conditions, the calibration graphs were linear with the correlation coefficient range 0.9981-0.9995. According to the results, the metals were found 0.019-0.051, 0.011-0.031, 0.00-0.081, 0.00-0.0002, 0.007-0.0925, 0.00-0.0104 μg/L in water samples for Pb, Mn, Zn, Cd, Fe, Cu respectively. The percentage relative standard deviation (%RSD) for five replicate samples were 〈 5% in all cases. The method has been successfully applied to the determination of trace elements in some environmental samples with satisfactory results.
基金supported by 2008 Research Grant from Kangwon National University,Korea
文摘Surface functionalization of suspended single-walled carbon nanotubes(SWNTs) using metal(Au) nanoparticles(NPs) is reported.SWNTs are grown on three-dimensionally patterned substrates by thermal chemical vapor deposition and successfully functionalized with Au NPs.Ethylendiamine is mainly used to functionalize SWNTs surface with amino groups before introducing Au NPs.From Raman scattering spectroscopy of the Au-functionalized suspended SWNTs,enhanced Raman scattering properties are obtained.The results suggest that the attached Au NPs may contribute to the enhancement of resonant phenomena.By measuring the electric properties after each functionalization process,it is found that Au NPs act as electron acceptor to the amine functionalized SWNTs.
基金Funded by the National Natural Science Foundation of China(No.11272117)
文摘Two kinds of metal-PTFE multilayer composites, which were composed of a steel backing, a middle layer of sintered porous bronze and a surface layer of polytetrafluoroethylene(PTFE) filled by carbon nanotubes(CNTs) or not, were prepared. The wear properties of metal-PTFE multilayer composites oscillating against 45 carbon steel under dry condition were evaluated on an oscillating wear tester, and the effect of CNTs on wear behaviour of metal-PTFE multilayer composites was studied. The results showed that the worn surface of metal-PTFE multilayer composites was characterized by adhesive wear, abrasive wear and fatigue wear. The CNTs greatly increased the adhesion strength of PTFE in the metal-PTFE composites and thereby greatly reduced puck, ploughing, and fatigue failure of PTFE during wearing. The PTFE filled with CNTs prevented direct contact between the mating surfaces and served as fine self-lubricating film, in which the oscillating wear mechanism of the composites was changed to a slightly adhesive wear. Therefore, the CNTs significantly decreased the weight loss and obviously increased the wear resistance of metal-PTFE multilayer composites.
基金supported by the German Federal Ministry of Education and Research (BMBF) for the CarboKat Project (03X0204D) within the scope of the Inno.CNT Alliance
文摘Oxygen and nitrogen-functionalized carbon nanotubes (OCNTs and NCNTs) were applied as metal-free catalysts in selective olefin hydro- genation. A series of NCNTs was synthesized by NH3 post-treatment of OCNTs. Temperature-programmed desorption, N2 physisorption, Raman spectroscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were employed to characterize the surface properties of OCNTs and NCNTs, aiming at a detailed analysis of the type and amount of oxygen- and nitrogen-containing groups as well as surface defects. The gas-phase treatments applied for oxygen and nitrogen functionalization at elevated temperatures up to 600 ℃ led to the increase of surface defects, but did not cause structural damages in the bulk. NCNTs showed a clearly higher activity than the pristine CNTs and OCNTs in the hydrogenation of 1,5-cyclooctadiene, and also the selectivity to cyclooctene was higher. The favorable catalytic properties are ascribed to the nitrogen-containing surface functional groups as well as surface defects related to nitrogen species. In contrast, oxygen-containing surface groups and the surface defects caused by oxygen species did not show clear contribution to the hydrogenation catalysis.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304378 and 11304377the Fundamental Research Funds for the Central Universities under Grant No 2013QNA42
文摘In the framework of the tight-binding model, the excitons states and linear absorption spectra are calculated in the metallic single-walled carbon nanotubes, with the axial magnetic field applied. From our calculations, it is found that for the Mll and M22 transitions, the exeiton states are split into four separate column states by the applied magnetic field due to the symmetry breaking. More interesting is that the splitting can be directly reflected from the linear absorption spectra~ which are dominated by four main absorption peaks. In addition, the splitting with increasing the axial magnetic field is also calculated, which increases linearly with the applied magnetic field. The obtained results are expected to be detected by the future experiments.
文摘This work uses the molecular dynamics approach to study the effects of functionalization of carbon nanotubes(CNTs)on the mechanical properties of Cu64Zr36 metallic glass(MG).Three types of functional groups,carboxylic,vinyl and ester were used.The effect of CNT volume fraction(Vf)and the number of functional groups attached to CNT,on the mechanical properties and thermal conductivity of CNT-MG composites was analysed using Biovia Materials Studio.At lower values of Vf(from 0 to 5%),the percentage increase in Young’s modulus was approximately 66%.As the value of Vf was increased further(from 5 to 12%),the rate of increase in Young’s modulus was reduced to 16%.The thermal conductivity was found to increase from 1.52 W/mK at Vf?0%to 5.88 W/mK at Vf?12%,thus giving an increase of approximately 286%.Functionalization of SWCNT reduced the thermal conductivity of the SWCNT-MG composites.
文摘In this work, we present a study of growth and characterization of nanocomposites, based on multiwalled carbon nanotubes and metal nanoparticles (Al, Ag, Au, Co, Cu, Fe, Ni and Ti). We observe a very different behavior between noble and transitions metals. All the nanocomposites are characterized by a network of carbon nanotubes with randomly insertion of spherical metal particles with dimensions of about 100 nm (clearly visible in SEM images). In particular, in transition metal nanocomposites, each tube on sheet surface is covered by particles of about 40 - 50 nm and for all metals the XPS measurements indicate the absence of chemical bonds and the simply physisorption of nanoparticle on carbon nanotube buckypaper. Furthermore, the nanocomposites show very different properties respect to pure carbon nanotubes: they are hydrophobic, their roughness is about 50% smaller than carbon nanotube and they exhibit a strong visible photoluminescence, which is absent in pure nanotube.
文摘Recently, Hsieh and Horng [1] published the paper entitled as above. In section 3 results and discussion, the authors mentioned the first and the second order kinetic models without any quotations. In fact these two kinetic models have been published [2-5]. In order to distinguish a kinetics model based on the ad- sorption capacity of a solid from the one based on the concentration of a solution, Lagergren's first-order rate equation has been called pseudo-first-order [6-7]. The Lagergren's equation has been widely cited, but there are far more mistakes made in the quotation and in the reference section of papers, including the title, the author's name, journal title, year of publishing, volume, and page number [3]. In addition, the second order kinetic expression for the adsorption systems of divalent metal ions using sphagnum moss peat has been reported by Ho [8].
基金provided by the National Natural Science Foundation of China(No.21503241,21133010,21261160487,51221264,21411130120,21473223,91545119,91545110)the“Strategic Priority Research Program” of the Chinese Academy of Sciences(CAS)(No.XDA09030103)+1 种基金CAS/State Administration for Foreign Experts Affairs(SAFEA)International Partnership Program for Creative Research Teams and the Doctoral Starting up Foundation of Liaoning Province,China(No.20121068)the financial support from Max Planck Society and China Scholarship Council
文摘A metal-free catalytic system combining oxidized carbon nanotubes (oCNTs) and ionic liquids (ILs) is presented for the oxidation of aromatic thiophene compounds with H2O2 as an oxidant. The oCNTs exhibit impressively high activity and stability in the system, which show an even better performance than those of some reported metal catalysts. The ILs are proved to have indispensable influence on the enhanced catalytic performance of the oCNTs. Detailed characterization by TG-MS and XPS demonstrates that the carbonyl groups are the active sites for the oxidation process, which is further supported by the deactivation and the model catalysts experiments. The quantitative analysis of different oxygen groups in oCNTs could be achieved by an isothermal temperature programmed TG-MS method. The concentration of carbonyl groups is 1.46 mmol per 1 g oCNTs and the tuiriover frequency of oCNTs could also be obtained (10.7 h^-1 in the presence of OmimPF6). H2O2 decomposition experiments combined with the EPR results reveal that the presence of OmimPF6 can avoid the intermediate HO· to form O2 and then improve the catalytic performance of oCNTs for the oxidation of dibenzothiophene.
基金Sponsored by the Committee of Education of Heilongjiang Province (Grant No.11541095)the Natural Science Foundation of Heilongjiang Province(Grant No. ZD200820-01 and B200814)the Scientific Research Foundation for Doctor of Harbin Normal University (Grant No.08XKYL38)
文摘Finding half-metallic behavior in one-dimensional structure is a challenge for technological applications at the nanometer scale.In the present work,the investigation was performed on the structural,electronic,and magnetic properties of encapsulated zigzag carbon nanotube (CNT) with various sizes by the NO,NO2,and O2 molecules using spin-polarized density functional theory (DFT).It was found that the encapsulations of the three molecules inside the CNT are energetically favorable.The calculated adsorption energies are strongly dependent on the tube diameter and the orientation between the encapsulated molecules and tube axis,while the structures of both CNTs and encapsulated molecules are nearly unchanged.Interestingly,the encapsulated CNTs by the three molecules exhibit half-metallicty in terms of the opposite local gating effect of the spin states.
基金supported by the National Natural Science Foundation of China (No.50971020)the National High-Tech Research and Development Program of China (No.2009AA03Z116)
文摘Multiwalled carbon nanotubes (CNTs) were coated by a molybdenum layer using carbonyl thermal decomposition process with a precursor of molybdenum hexacarbonyl. The Mo-coated CNTs (Mo-CNTs) were added into copper powders to fabricate Mo-CNT/Cu composites by means of mechanical milling followed by spark plasma sintering. The Mo-CNTs were uniform dispersion in the Cu matrix when their contents were 2.5 vo1.%-7.5 vol.%, while some Mo-CNT clusters were clearly observed at additions of 10.0 vo1.%-15.0 vol.% Mo-CNTs in the mixture. The mechanical, electrical, and thermal properties of the Mo-CNT/Cu composites were characterized, and the results showed that the tensile strength and hardness were 2.0 and 2.2 times higher than those of CNT-free specimens, respectively. Moreover, the Mo-CNT/Cu composites exhibited an enhanced thermal conductivity but inferior electrical conductivity compared with sintered pure Cu. The uncoated CNT/Cu composites were fabricated by the similar processes, and the measured tensile strength, hardness, thermal conductivity, and electrical conductivity of the CNT/Cu composites were lower than those of the Mo-CNT/Cu composites.