L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for...L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.展开更多
A voltammetric sensor based on the electropolymerization of cobalt-poly(methionine)(Co-poly(Met)) on a glassy carbon electrode (GCE) was developed and applied for the determination of estriol by differential pulse vol...A voltammetric sensor based on the electropolymerization of cobalt-poly(methionine)(Co-poly(Met)) on a glassy carbon electrode (GCE) was developed and applied for the determination of estriol by differential pulse voltammetry (DPV) for the first time. The electrochemical properties of the Co-poly(Met)/GCE were analysed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the polymers on the GCE surface. The deposition of the Co-poly(Met) film on the GCE surface enhanced the sensor electronic transfer. CV studies revealed that estriol exhibits an irreversible oxidation peak at t0.58 V for the Co-poly(Met)/GCE (vs. Ag/AgCl reference electrode) in 0.10 mol/L Britton-Robinson buffer solution (pH=7.0). Different voltammetric scan rates (10-200 mV/s) suggested that the estriol oxidation on the Co-poly(Met)/GCE surface is controlled by adsorption and diffusion processes. Based on the optimized DPV conditions, the linear responses for estriol quantification were from 0.596 μmol/L to 4.76 μmol/L (R2 =0.996) and from 5.66 μmol/L to 9.90 μmol/L (R2 =0.994) with a limit of detection (LOD) of 0.0340 μmol/L and a limit of quantification (LOQ) of 0.113 μmol/L. The DPV-Co-poly(Met)/GCE method provided good intra-day and inter-day repeatability with RSD values lower than 5%. Also, no interference of real sample matrices was observed on the estriol voltammetric response, making the DPV-Copoly( Met)/GCE highly selective for estriol. The accuracy test showed that the estriol recovery was in the ranges 96.7%-103% and 98.7%-102% for pharmaceutical tablets and human urine, respectively. The estriol quantification in pharmaceutical tablets performed by the Co-poly(Met)/GCE-assisted DPV method was comparable to the official analytical protocols.展开更多
A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with...A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate.The experimental results suggest that the phcniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response.Peak current response is linearly dependent on the concentration of pheniramine in the range 200-1500 μg/mL with correlation coefficient 0.9987.The limit of detection is 58.31 μg/m L.The modified electrode shows good sensitivity and repeatability.展开更多
Nano-gold (NG) modified glassy carbon electrodes (GCEs) were used for determination of epinephrine (EP) in the presence of high concentration ascorbic acid (AA) by cyclic voltammetry (CV). This modified electrode can...Nano-gold (NG) modified glassy carbon electrodes (GCEs) were used for determination of epinephrine (EP) in the presence of high concentration ascorbic acid (AA) by cyclic voltammetry (CV). This modified electrode can not only catalytically oxidize EP and AA, but also separate the catalytic peak potentials of EP and AA by about 183.5 mV. In pH = 7.0 ogisogate byffer solution, the linear range of epinephrine was 5 106 ~ 1 ?10-4 mol/L.展开更多
The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0....The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0.105 V versus SCE, the electron transfer rate constant was 4.66 s-1. E^0' of Hb at the modified electrode was linearly varied in a pH range of 5.0-8.0 with a slope of-49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an excellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H2O2 concentration in a range of 1.0× 10^-6 to 2.2× 10^-3 mol/L. The detection limit was 2.0× 10^-7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(Km^app) was 2.95 mmol/L.展开更多
The glassy carbon (GC) electrode modified with a monolayer nickel hydroxide (GC/Ni(OH) 2) was prepared by immersion of GC substrate in 1.0×10 -3 mol/L NiSO 4 solution, and then cyclic voltammetric scannin...The glassy carbon (GC) electrode modified with a monolayer nickel hydroxide (GC/Ni(OH) 2) was prepared by immersion of GC substrate in 1.0×10 -3 mol/L NiSO 4 solution, and then cyclic voltammetric scanning in 0.20 mol/L KOH. Similarly, GC/Co(OH) 2 electrode was prepared too. The experiments showed that the voltammetric behavior of GC/Ni(OH) 2 electrode in 0.20 mol/L KOH is more stable than that of GC/ Co(OH) 2. It was found that the GC/Ni(OH) 2 electrode acts as an effective electrocatalysis for the oxidation of hydrazine.展开更多
The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at b...The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small. However, when the electrode was activated at certain potential (i.e. 1.9 V) or modified with carbon nanotube, the peak became more sensitive, resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3×10^-7 - 1.1×10^-5 mol/L at activated glassy carbon electrode and in the range of 1.0×10^-5 - 5.0×10^-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0.998 and 0.997, respectively. The determination limit was 1.0×10^-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.展开更多
Hand, foot, and mouth disease (HFMD) is a common infectious disease in children, occurring primarily in preschool children[1_3] with infants under three years old being gen erally susceptible. The disease is caused by...Hand, foot, and mouth disease (HFMD) is a common infectious disease in children, occurring primarily in preschool children[1_3] with infants under three years old being gen erally susceptible. The disease is caused by various enteroviruses, among which EV71 and Coxsackievirus A group 16 (Cox A16) are the most comm on ⑷.According to in formation released by the Chinese Center for Disease Control and Prevention on June 8, 2016, EV71 infection- related HFMD has been prevalent among infants and young children in China since 2007, with a high incidenee and many deaths.展开更多
Direct electrochemistry of catalase (Ct) has been studied on single wall carbon nanotubes (SWNTs) modified glassy carbon (GC) electrode. A pair of well-defined nearly reversible redox peaks is given at –0.48...Direct electrochemistry of catalase (Ct) has been studied on single wall carbon nanotubes (SWNTs) modified glassy carbon (GC) electrode. A pair of well-defined nearly reversible redox peaks is given at –0.48 V (vs. SCE) in 0.1 mol/L phosphate solution (pH 7.0). The peak current in cyclic voltammogram is proportional to the scan rate. The peak potential of catalase is shifted to more negative value when the pH increases. Catalase can adsorb on the SWNTs modified electrode.展开更多
Abstract The electrochemical properties of two basic violets (methyl violet and ethyl violet) at the MWNTs/Nafion modified glassy carbon electrode were investigated. The redox of the basic violets is two-electron a...Abstract The electrochemical properties of two basic violets (methyl violet and ethyl violet) at the MWNTs/Nafion modified glassy carbon electrode were investigated. The redox of the basic violets is two-electron and two-proton process, and methyl violet presents stronger electron transfer capacity than ethyl violet. Meanwhile, the inclusion constants of the two basic violets with five CDs were determined by differential pulse voltammetry (DPV). The two basic violets and CDs can form 1:1 complexes, The inclusion capacities of the two basic violets follow the same order: CM-β-CD 〉 HP-β-CD 〉 TM-β-CD 〉 DM-β- CD 〉 β-CD. ?2009 Yu Jing Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
With 1-Pymnebutyric acid (PBA) and multiwalled carbon nanotubes (MWNTs), glassy carbon electrode modified was successfully prepared. In phosphate buffer solution (pH 7,0), the direct electrochemistry of cytochro...With 1-Pymnebutyric acid (PBA) and multiwalled carbon nanotubes (MWNTs), glassy carbon electrode modified was successfully prepared. In phosphate buffer solution (pH 7,0), the direct electrochemistry of cytochrome C (Cyt C) was realized. In the cyclic voltammetry experiment two pairs of redox peaks ofCyt C were observed at 0.018 V and -0.314 V (vs. SCE), respectively. The redox reaction at 0.018 V was diffusion controlled, while the redox reaction at -0.314 V was adsorption controlled.展开更多
Single wall carbon nanotube modified glassy carbon electrode (SWCNT/GCE) was used for flow-injection analysis (FIA) for phenolic compounds (phenol (P), 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorphen...Single wall carbon nanotube modified glassy carbon electrode (SWCNT/GCE) was used for flow-injection analysis (FIA) for phenolic compounds (phenol (P), 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorphenol (TCP) and pentachlorophenol (PCP)). Experimental variables such as the detection potential, flow rate and pH of the carrier solution, 0.1 M sodium acetate, were optimized. Under these conditions, the designed electrode showed a very good performance for the amperometric measurements, with no need to apply a cleaning or pre-treatment procedure. The operational stability was tested with 20 repetitive injections of each analyte and was found to be good. The analytical performance of the SWCNT/GCE electrode under flow through conditions was tested and was found to be impressive. When it is compared with other enzymatic and non-enzymatic sensors, it shows wider dynamic range for the detection of phenolic compounds with low limits of detection. These results suggest that the method is quite useful for monitoring and analyzing phenols and chlorophenols.展开更多
The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon ele...The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.展开更多
The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hyd...The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.展开更多
The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal....The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.展开更多
A new chemically modified electrode(CME) immobilized on the surface of multi-wall carbon nanotubes functionalized with carboxylic groups was fabricated. The results indicate that the CME exhibits efficiently electroca...A new chemically modified electrode(CME) immobilized on the surface of multi-wall carbon nanotubes functionalized with carboxylic groups was fabricated. The results indicate that the CME exhibits efficiently electrocatalytic oxidation of 6-mercaptopurine(6-MP). The CME can be used as the working electrode in the liquid chromatography for the determination of 6-MP. The peak current of 6-MP is linearly changed with its concentration ranging from 4.0×10 -7 to 1.0×10 -4 mol/L with the calculated detection limit (S/N=3) of 2.0×10 -7 mol/L. Coupled with microdialysis sampling, the method has been successfully applied to assessing the content of 6-MP in rat blood.展开更多
The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochem...The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).It was found that the SWCNT modified electrode could speed greatly up the electron transfer rate compared with the bare GC electrode.After the SWCNT was treated with alkali or mixed acids,the reaction rate and activation energy of NO electrooxidation were changed to different extent.Chemical modification of the SWCNT surface is one of the most powerful methods to change the sensitivity of NO electrooxidation reaction.The modified electrode with SWCNT obtained by the firstly alkali treatment and then the mixed acids treatment was the best one for NO electrooxidation,the result of CV was also confirmed by that of EIS.The anodic processes of NO were recognized more clearly by exploring the reaction mechanism of NO electrooxidation at the SWCNT modified electrode.展开更多
A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was de...A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.展开更多
The electrochemistry of xanthinol nicotinate (Xan) was studied by cyclic voltammetry at a glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and room-temperature ionic liqui...The electrochemistry of xanthinol nicotinate (Xan) was studied by cyclic voltammetry at a glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and room-temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6). The modified electrode exhibited good promotion to the electrochemical oxidation of Xan and an ultrasensitive electrochemical method was proposed for the determination of Xan. This method was successfully applied to the determination of Xan in Xan tablets. C 2009 XiaoYu Bao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Electrochemical investigation of catechol using square wave voltammetry with anthraquinone modified carbon paste electrode was found to be very sensitive. Compared with the unmodified carbon paste electrode, the anthr...Electrochemical investigation of catechol using square wave voltammetry with anthraquinone modified carbon paste electrode was found to be very sensitive. Compared with the unmodified carbon paste electrode, the anthraquinone modified electrode remarkably increases the peak currents of catechol, and greatly lowers the peak potential separation. Two varieties of tea, namely green, and black variety: Wush Wush tea, from Ethiopia, known by its brand name were investigated. Responses for the extracts using ethanol: water (1:4) % v/v showed green tea to be superior in catechol content. Optimization of different variables such as pH of working solution, modifier composition and square wave parameters such as frequency, amplitude and step potential were made to improve the method efficiency during the experiment. The reproducibility for the nine repeated analysis of 80 μmol·L-1 of catechol gave a relative standard deviation of 3.65% and linear calibration plots were obtained in the range 6 to 80 μmol·L-1 with (R = 0.998) and the detection limit with (S/N = 3) was as low as 2.155 x 10-7 mol·L-1.展开更多
文摘L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.
基金CNPq (454438/2014-1)CAPES+1 种基金FINEPFAPEMIG for the financial support to this work
文摘A voltammetric sensor based on the electropolymerization of cobalt-poly(methionine)(Co-poly(Met)) on a glassy carbon electrode (GCE) was developed and applied for the determination of estriol by differential pulse voltammetry (DPV) for the first time. The electrochemical properties of the Co-poly(Met)/GCE were analysed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used to characterize the polymers on the GCE surface. The deposition of the Co-poly(Met) film on the GCE surface enhanced the sensor electronic transfer. CV studies revealed that estriol exhibits an irreversible oxidation peak at t0.58 V for the Co-poly(Met)/GCE (vs. Ag/AgCl reference electrode) in 0.10 mol/L Britton-Robinson buffer solution (pH=7.0). Different voltammetric scan rates (10-200 mV/s) suggested that the estriol oxidation on the Co-poly(Met)/GCE surface is controlled by adsorption and diffusion processes. Based on the optimized DPV conditions, the linear responses for estriol quantification were from 0.596 μmol/L to 4.76 μmol/L (R2 =0.996) and from 5.66 μmol/L to 9.90 μmol/L (R2 =0.994) with a limit of detection (LOD) of 0.0340 μmol/L and a limit of quantification (LOQ) of 0.113 μmol/L. The DPV-Co-poly(Met)/GCE method provided good intra-day and inter-day repeatability with RSD values lower than 5%. Also, no interference of real sample matrices was observed on the estriol voltammetric response, making the DPV-Copoly( Met)/GCE highly selective for estriol. The accuracy test showed that the estriol recovery was in the ranges 96.7%-103% and 98.7%-102% for pharmaceutical tablets and human urine, respectively. The estriol quantification in pharmaceutical tablets performed by the Co-poly(Met)/GCE-assisted DPV method was comparable to the official analytical protocols.
文摘A sensitive electroanalytical method for quantification of pheniramine in pharmaceutical formulation has been investigated on the basis of the enhanced electrochemical response at glassy carbon electrode modified with multi-walled carbon nanotubes in the presence of sodium lauryl sulfate.The experimental results suggest that the phcniramine in anionic surfactant solution exhibits electrocatalytic effect resulting in a marked enhancement of the peak current response.Peak current response is linearly dependent on the concentration of pheniramine in the range 200-1500 μg/mL with correlation coefficient 0.9987.The limit of detection is 58.31 μg/m L.The modified electrode shows good sensitivity and repeatability.
基金The authors gratefully acknowledge financial support from the Natural Science Foundation of Anhui Province and the Natural Science Foundation of Anhui Education Committee.
文摘Nano-gold (NG) modified glassy carbon electrodes (GCEs) were used for determination of epinephrine (EP) in the presence of high concentration ascorbic acid (AA) by cyclic voltammetry (CV). This modified electrode can not only catalytically oxidize EP and AA, but also separate the catalytic peak potentials of EP and AA by about 183.5 mV. In pH = 7.0 ogisogate byffer solution, the linear range of epinephrine was 5 106 ~ 1 ?10-4 mol/L.
基金Supported by the National Natural Science Foundation of China(No.20605009)
文摘The direct electron transfer of hemoglobin at the PAMAM-MWNTs-AuNPs composite film modified glassy carbon electrode was studied. In a phosphate buffer solution(PBS, pH=7.0), the formal potential(E^0) of Hb was -0.105 V versus SCE, the electron transfer rate constant was 4.66 s-1. E^0' of Hb at the modified electrode was linearly varied in a pH range of 5.0-8.0 with a slope of-49.2 mV/pH. The Hb/PAMAM-MWNTs-AuNPs/GCE gave an excellent electrocatalytic response to the reduction of hydrogen peroxide. The catalytic current increased linearly with H2O2 concentration in a range of 1.0× 10^-6 to 2.2× 10^-3 mol/L. The detection limit was 2.0× 10^-7 mol/L at a signal to noise ratio of 3. The Michaelis-Menten constant(Km^app) was 2.95 mmol/L.
文摘The glassy carbon (GC) electrode modified with a monolayer nickel hydroxide (GC/Ni(OH) 2) was prepared by immersion of GC substrate in 1.0×10 -3 mol/L NiSO 4 solution, and then cyclic voltammetric scanning in 0.20 mol/L KOH. Similarly, GC/Co(OH) 2 electrode was prepared too. The experiments showed that the voltammetric behavior of GC/Ni(OH) 2 electrode in 0.20 mol/L KOH is more stable than that of GC/ Co(OH) 2. It was found that the GC/Ni(OH) 2 electrode acts as an effective electrocatalysis for the oxidation of hydrazine.
文摘The electrochemical behavior of epinephrine at activated glassy carbon electrode and carbon nanotube-coated glassy carbon electrode was studied. Epinephrine could exhibit an anodic peak at about 0.2 V (vs. SCE) at bare glassy carbon electrode, but it was very small. However, when the electrode was activated at certain potential (i.e. 1.9 V) or modified with carbon nanotube, the peak became more sensitive, resulting from the increase in electrode area in addition to the electrostatic attraction. Under the selected conditions, the anodic peak current was linear to epinephrine concentration in the range of 3.3×10^-7 - 1.1×10^-5 mol/L at activated glassy carbon electrode and in the range of 1.0×10^-5 - 5.0×10^-5 mol/L at carbon nanotube-coated electrode. The correlation coefficients were 0.998 and 0.997, respectively. The determination limit was 1.0×10^-7 mol/L. The two electrodes have been successfully applied for the determination of epinephrine in adrenaline hydrochloride injection with recovery of 95%-104%.
基金supported by the China Mega-Project for Infectious Diseases of the Ministry of Science and Technology and Ministry of Health of the People’s Republic of China [2018ZX10201002]a grant from Science and Technology Department of Hubei Province [2018CFB630]a grant from the ‘ChuTian Scholar’ Project Award,Hubei Province,China
文摘Hand, foot, and mouth disease (HFMD) is a common infectious disease in children, occurring primarily in preschool children[1_3] with infants under three years old being gen erally susceptible. The disease is caused by various enteroviruses, among which EV71 and Coxsackievirus A group 16 (Cox A16) are the most comm on ⑷.According to in formation released by the Chinese Center for Disease Control and Prevention on June 8, 2016, EV71 infection- related HFMD has been prevalent among infants and young children in China since 2007, with a high incidenee and many deaths.
基金supported by the National Natural Science Foundation of China(No.50134020)by the Foundation of Doctoral Programs of the Ministry of Education,(No.20010001028).
文摘Direct electrochemistry of catalase (Ct) has been studied on single wall carbon nanotubes (SWNTs) modified glassy carbon (GC) electrode. A pair of well-defined nearly reversible redox peaks is given at –0.48 V (vs. SCE) in 0.1 mol/L phosphate solution (pH 7.0). The peak current in cyclic voltammogram is proportional to the scan rate. The peak potential of catalase is shifted to more negative value when the pH increases. Catalase can adsorb on the SWNTs modified electrode.
基金supported by the National Natural Science Foundation of China(No.90813018)the Natural Science Foundation of Shanxi Province of China(No.2007011023).
文摘Abstract The electrochemical properties of two basic violets (methyl violet and ethyl violet) at the MWNTs/Nafion modified glassy carbon electrode were investigated. The redox of the basic violets is two-electron and two-proton process, and methyl violet presents stronger electron transfer capacity than ethyl violet. Meanwhile, the inclusion constants of the two basic violets with five CDs were determined by differential pulse voltammetry (DPV). The two basic violets and CDs can form 1:1 complexes, The inclusion capacities of the two basic violets follow the same order: CM-β-CD 〉 HP-β-CD 〉 TM-β-CD 〉 DM-β- CD 〉 β-CD. ?2009 Yu Jing Guo. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金This project was jointly supported by the National Natural Science Foundation of China(No.50134020)by the Foundation of Doctoral Prograrms of the Ministry of Education of China(No.20010001028).
文摘With 1-Pymnebutyric acid (PBA) and multiwalled carbon nanotubes (MWNTs), glassy carbon electrode modified was successfully prepared. In phosphate buffer solution (pH 7,0), the direct electrochemistry of cytochrome C (Cyt C) was realized. In the cyclic voltammetry experiment two pairs of redox peaks ofCyt C were observed at 0.018 V and -0.314 V (vs. SCE), respectively. The redox reaction at 0.018 V was diffusion controlled, while the redox reaction at -0.314 V was adsorption controlled.
文摘Single wall carbon nanotube modified glassy carbon electrode (SWCNT/GCE) was used for flow-injection analysis (FIA) for phenolic compounds (phenol (P), 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorphenol (TCP) and pentachlorophenol (PCP)). Experimental variables such as the detection potential, flow rate and pH of the carrier solution, 0.1 M sodium acetate, were optimized. Under these conditions, the designed electrode showed a very good performance for the amperometric measurements, with no need to apply a cleaning or pre-treatment procedure. The operational stability was tested with 20 repetitive injections of each analyte and was found to be good. The analytical performance of the SWCNT/GCE electrode under flow through conditions was tested and was found to be impressive. When it is compared with other enzymatic and non-enzymatic sensors, it shows wider dynamic range for the detection of phenolic compounds with low limits of detection. These results suggest that the method is quite useful for monitoring and analyzing phenols and chlorophenols.
文摘The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.
文摘The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.
基金Sponsored by Major Science and Technology Program for Water Pollution Control and Treatment(Grant No.2013ZX07201007)the Program for New Century Excellent Talents in University(Grant No.NCET-11-0795)
文摘The object of this study is to prepare iron species-impregnated granular activated carbon as particle electrodes in order to improve their adsorption and electrocatalytic degradation capacity in Benzothiazole removal.The incorporation of Fe-containing catalysts was performed by Fe(NO_3)_3 impregnation.The obtained samples were characterized by BET,Fourier transform infrared spectroscopy,SEM-EDS,powder X-ray diffraction,X-ray photoelectron spectra and TG.Compared with pure activated carbon,this modified particle electrodes show higher static adsorption capacities and TOC removal,which have respectively increased by25.9% and 54.4%.Both physisorption and chemisorption exist in the process of benzothiazole adsorption,where the latter plays a major role.In this way,the Fe-containing catalysts on modified particle electrodes are demonstrated to make a greater contribution to the improvement of electrocatalytic degradation by decreasing the activated energy by 32%.
文摘A new chemically modified electrode(CME) immobilized on the surface of multi-wall carbon nanotubes functionalized with carboxylic groups was fabricated. The results indicate that the CME exhibits efficiently electrocatalytic oxidation of 6-mercaptopurine(6-MP). The CME can be used as the working electrode in the liquid chromatography for the determination of 6-MP. The peak current of 6-MP is linearly changed with its concentration ranging from 4.0×10 -7 to 1.0×10 -4 mol/L with the calculated detection limit (S/N=3) of 2.0×10 -7 mol/L. Coupled with microdialysis sampling, the method has been successfully applied to assessing the content of 6-MP in rat blood.
基金Supported by the National Natural Science Foundation of China(Nos.20676027 and 21076066)the Postdoctoral Foundation of Heilongjiang Province,China(No.LBH-Q07111)
文摘The electrocatalytic oxidation of nitric oxide(NO) at a glass carbon electrode(GC) modified with functionalized single-walled carbon nanotubes(SWCNTs) was investigated by cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS).It was found that the SWCNT modified electrode could speed greatly up the electron transfer rate compared with the bare GC electrode.After the SWCNT was treated with alkali or mixed acids,the reaction rate and activation energy of NO electrooxidation were changed to different extent.Chemical modification of the SWCNT surface is one of the most powerful methods to change the sensitivity of NO electrooxidation reaction.The modified electrode with SWCNT obtained by the firstly alkali treatment and then the mixed acids treatment was the best one for NO electrooxidation,the result of CV was also confirmed by that of EIS.The anodic processes of NO were recognized more clearly by exploring the reaction mechanism of NO electrooxidation at the SWCNT modified electrode.
文摘A magnetic bar carbon paste electrode (MBCPE) modified with Fe3O4 magnetic nanoparticles (Fe3O4NPs) and 2‐(3,4‐dihydroxyphenyl) benzothiazole (DPB) for the electrochemical determina‐tion of hydrazine was developed. The DPB was firstly self‐assembled on the Fe3O4NPs, and the re‐sulting Fe3O4NPs/DPB composite was then absorbed on the designed MBCPE. The MBCPE was used to attract the magnetic nanoparticles to the electrode surface. Owing to its high conductivity and large effective surface area, the novel electrode had a very large current response for the electrocat‐alytic oxidation of hydrazine. The modified electrode was characterized by voltammetry, scanning electron microscopy, electrochemical impedance spectroscopy, infrared spectroscopy, and UV‐visible spectroscopy. Voltammetric methods were used to study the electrochemical behaviour of hydrazine on MBCPE/Fe3O4NPs/DPB in phosphate buffer solution (pH = 7.0). The MBCPE/Fe3O4NPs/DPB, acting as an electrochemical sensor, exhibited very high electrocatalytic activity for the oxidation of hydrazine. The presence of DPB was found to reduce the oxidation potential of hydrazine and increase the catalytic current. The dependence of the electrocatalytic current on the hydrazine concentration exhibited two linear ranges, 0.1–0.4 μmol/L and 0.7–12.0 μmol/L, with a detection limit of 18.0 nmol/L. Additionally, the simultaneous determination of hydrazine and phe‐nol was investigated using the MBCPE/Fe3O4NPs/DPB electrode. Voltammetric experiments showed a linear range of 100–470 μmol/L and a detection limit of 24.3 μmol/L for phenol, and the proposed electrode was applied to the determination of hydrazine and phenol in water samples.
基金the financial support of the Takle Key Problem of ScienceTechnology of Nanyang City,PR China(No.2006G0707).
文摘The electrochemistry of xanthinol nicotinate (Xan) was studied by cyclic voltammetry at a glassy carbon electrode modified by a gel containing multi-walled carbon nanotubes (MWNTs) and room-temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6). The modified electrode exhibited good promotion to the electrochemical oxidation of Xan and an ultrasensitive electrochemical method was proposed for the determination of Xan. This method was successfully applied to the determination of Xan in Xan tablets. C 2009 XiaoYu Bao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘Electrochemical investigation of catechol using square wave voltammetry with anthraquinone modified carbon paste electrode was found to be very sensitive. Compared with the unmodified carbon paste electrode, the anthraquinone modified electrode remarkably increases the peak currents of catechol, and greatly lowers the peak potential separation. Two varieties of tea, namely green, and black variety: Wush Wush tea, from Ethiopia, known by its brand name were investigated. Responses for the extracts using ethanol: water (1:4) % v/v showed green tea to be superior in catechol content. Optimization of different variables such as pH of working solution, modifier composition and square wave parameters such as frequency, amplitude and step potential were made to improve the method efficiency during the experiment. The reproducibility for the nine repeated analysis of 80 μmol·L-1 of catechol gave a relative standard deviation of 3.65% and linear calibration plots were obtained in the range 6 to 80 μmol·L-1 with (R = 0.998) and the detection limit with (S/N = 3) was as low as 2.155 x 10-7 mol·L-1.