期刊文献+
共找到901篇文章
< 1 2 46 >
每页显示 20 50 100
Coupling of BiOCl Ultrathin Nanosheets with Carbon Quantum Dots for Enhanced Photocatalytic Performance
1
作者 Pin Song Xiaoyu Fang +14 位作者 Wei Jiang Yuyang Cao Daobin Liu Shiqiang Wei Jun Du Lang Sun Lei Zhao Song Liu Yuzhu Zhou Jun Di Chade Lv Bijun Tang Jiefu Yang Tingting Kong Yujie Xiong 《Transactions of Tianjin University》 EI CAS 2024年第3期211-220,共10页
Over the past few decades,photocatalysis technology has received extensive attention because of its potential to mitigate or solve energy and environmental pollution problems.Designing novel materials with outstanding... Over the past few decades,photocatalysis technology has received extensive attention because of its potential to mitigate or solve energy and environmental pollution problems.Designing novel materials with outstanding photocatalytic activities has become a research hotspot in this field.In this study,we prepared a series of photocatalysts in which BiOCl nanosheets were modified with carbon quantum dots(CQDs)to form CQDs/BiOCl composites by using a simple solvothermal method.The photocatalytic performance of the resulting CQDs/BiOCl composite photocatalysts was assessed by rhodamine B and tetracycline degradation under visible-light irradiation.Compared with bare BiOCl,the photocatalytic activity of the CQDs/BiOCl composites was significantly enhanced,and the 5 wt%CQDs/BiOCl composite exhibited the highest photocatalytic activity with a degradation efficiency of 94.5%after 30 min of irradiation.Moreover,photocatalytic N_(2)reduction performance was significantly improved after introducing CQDs.The 5 wt%CQDs/BiOCl composite displayed the highest photocatalytic N_(2)reduction performance to yield NH_3(346.25μmol/(g h)),which is significantly higher than those of 3 wt%CQDs/BiOCl(256.04μmol/(g h)),7 wt%CQDs/BiOCl(254.07μmol/(g h)),and bare BiOCl(240.19μmol/(g h)).Our systematic characterizations revealed that the key role of CQDs in improving photocatalytic performance is due to their increased light harvesting capacity,remarkable electron transfer ability,and higher photocatalytic activity sites. 展开更多
关键词 carbon quantum dots BiOCl Rhodamine B TETRACYCLINE PHOTOCATALYSIS
下载PDF
Small but mighty:Empowering sodium/potassium-ion battery performance with S-doped SnO_(2) quantum dots embedded in N,S codoped carbon fiber network
2
作者 Shengnan He Hui Wu +4 位作者 Shuang Li Ke Liu Yaxiong Yang Hongge Pan Xuebin Yu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期186-200,共15页
SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish ... SnO_(2) has been extensively investigated as an anode material for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs)due to its high Na/K storage capacity,high abundance,and low toxicity.However,the sluggish reaction kinetics,low electronic conductivity,and large volume changes during charge and discharge hinder the practical applications of SnO_(2)-based electrodes for SIBs and PIBs.Engineering rational structures with fast charge/ion transfer and robust stability is important to overcoming these challenges.Herein,S-doped SnO_(2)(S-SnO_(2))quantum dots(QDs)(≈3 nm)encapsulated in an N,S codoped carbon fiber networks(S-SnO_(2)-CFN)are rationally fabricated using a sequential freeze-drying,calcination,and S-doping strategy.Experimental analysis and density functional theory calculations reveal that the integration of S-SnO_(2) QDs with N,S codoped carbon fiber network remarkably decreases the adsorption energies of Na/K atoms in the interlayer of SnO_(2)-CFN,and the S doping can increase the conductivity of SnO_(2),thereby enhancing the ion transfer kinetics.The synergistic interaction between S-SnO_(2) QDs and N,S codoped carbon fiber network results in a composite with fast Na+/K+storage and extraordinary long-term cyclability.Specifically,the S-SnO_(2)-CFN delivers high rate capacities of 141.0 mAh g^(−1) at 20 A g^(−1) in SIBs and 102.8 mAh g^(−1) at 10 A g^(−1) in PIBs.Impressively,it delivers ultra-stable sodium storage up to 10,000 cycles at 5 A g^(−1) and potassium storage up to 5000 cycles at 2 A g^(−1).This study provides insights into constructing metal oxide-based carbon fiber network structures for high-performance electrochemical energy storage and conversion devices. 展开更多
关键词 carbon fiber network heteroatom doping potassium-ion battery sodium-ion battery S-SnO_(2)quantum dot
下载PDF
Effective Activation of Melamine for Synchronous Synthesis of Catalytically Active Nanosheets and Fluorescence-Responsive Quantum Dots
3
作者 Jie Xuan Guijian Guan Ming-Yong Han 《Transactions of Tianjin University》 EI CAS 2024年第3期284-296,共13页
Because of the low reactivity of cyclic nitrides,liquid-phase synthesis of carbon nitride introduces challenges despite its favorable potential for energy-efficient preparation and superior applications.In this study,... Because of the low reactivity of cyclic nitrides,liquid-phase synthesis of carbon nitride introduces challenges despite its favorable potential for energy-efficient preparation and superior applications.In this study,we demonstrate a strong interaction between citric acid and melamine through experimental observation and theoretical simulation,which eff ectively activates melamine-condensation activity and produces carbon-rich carbon nitride nanosheets(CCN NSs)during hydrothermal reaction.Under a large specific surface area and increased light absorption,these CCN NSs demonstrate significantly enhanced photocatalytic activity in CO_(2) reduction,increasing the CO production rate by approximately tenfold compared with hexagonal melamine(h-Me).Moreover,the product selectivity of CCN NSs reaches up to 93.5%to generate CO from CO_(2).Furthermore,the annealed CCN NSs exhibit a CO conversion rate of up to 95.30μmol/(g h),which indicates an 18-fold increase compared with traditional carbon nitride.During the CCN NS synthesis,nitrogen-doped carbon quantum dots(NDC QDs)are simultaneously produced and remain suspended in the supernatant after centrifugation.These QDs disperse well in water and exhibit excellent luminescent properties(QY=67.2%),allowing their application in the design of selective and sensitive sensors to detect pollutants such as pesticide 2,4-dichlorophenol with a detection limit of as low as 0.04μmol/L.Notably,the simultaneous synthesis of CCN NSs and NDC QDs provides a cost-eff ective and highly efficient process,yielding products with superior capabilities for catalytic conversion of CO_(2) and pollutant detection,respectively. 展开更多
关键词 carbon nitride Hydrothermal reaction PHOTOCATALYSIS carbon dioxide quantum dots
下载PDF
Improving effect of carbonized quantum dots(CQDs)in pure copper matrix composites 被引量:5
4
作者 HUANG Xiao BAO Rui YI Jian-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1255-1265,共11页
Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was... Carbon quantum dots(CQDs),which contain a core structure composed of sp^(2)carbon,can be used as the reinforcing phase like graphene and carbon nanotubes in metal matrix.In this paper,the CQD/Cu composite material was prepared by powder metallurgy method.The composite powder was prepared by molecular blending method and ball milling method at first,and then densified into bulk material by spark plasma sintering(SPS).X-ray diffraction,Raman spectroscopy,infrared spectroscopy,and nuclear magnetic resonance were employed to characterize the CQD synthesized under different temperature conditions,and then CQDs with a higher degree of sp^(2)were utilized as the reinforcement to prepare composite materials with different contents.Mechanical properties and electrical conductivity results show that the tensile strength of the 0.2 CQD/Cu composite material is~31%higher than that of the pure copper sample,and the conductivity of 0.4 CQD/Cu is~96%IACS,which is as high as pure copper.TEM and HRTEM results show that good interface bonding of CQD and copper grain is the key to maintaining high mechanical and electrical conductivity.This research provides an important foundation and direction for new carbon materials reinforced metal matrix composites. 展开更多
关键词 carbon quantum dots copper matrix mechanical property electrical property interface bonding
下载PDF
Carbon Nitride Quantum Dots:A Novel Fluorescent Probe for Non-Enzymatic Hydrogen Peroxide and Mercury Detection 被引量:1
5
作者 CHEN Lei LI Quan +2 位作者 WANG Xing WANG Wentai WANG Lisha 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1572-1582,共11页
The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals... The mercury species in the ocean(MeHg,Hg^(2+))will be enriched in marine organisms and threaten human health through the food chain.While the excessive H_(2)O_(2)in the metabolic process will produce hydroxyl radicals and accelerate the aging of human cells,causing a series of diseases.Hence,the cost-effective and rapid detection of mercury and H_(2)O_(2)is of urgent requirement and significance.Here,we synthesized emerging graphitic carbon nitride quantum dots(g-CNQDs)with high fluorescence quantum yield(FLQY)of 42.69%via a bottom-up strategy by a facile one-step hydrothermal method.The g-CNQDs can detect the H_(2)O_(2)and Hg^(2+)through the fluorescence quenching effect between g-CNQDs and detected substances.With the presence of KI,g-CNQDs show concentration-dependent fluorescence toward H_(2)O_(2),with a wide detection range of 1–1000μmolL^(-1)and a low detection limit of 0.23μmolL^(-1).The g-CNQDs also show sensitivity toward Hg^(2+)with a detection range of 0–0.1μmolL^(-1)and a detection limit of 0.038μmolL^(-1).This dual-function detection of g-CNQDs has better practical application capability compared to other quantum dot detection.This study may provide a new strategy for g-CNQDs preparation and construct a fluorescence probe that can be used in various systems involving H_(2)O_(2)and Hg^(2+),providing better support for future bifunctional or multifunction studies. 展开更多
关键词 carbon nitride quantum dots hydrogen peroxide Hg2+ fluorescence probe
下载PDF
Energy Transfer Dynamics between Carbon Quantum Dots and Molybdenum Disulfide Revealed by Transient Absorption Spectroscopy
6
作者 Ruixiang Wu Xin Liu +4 位作者 Xiaoshuai Wang Jingjing Luo Bin Li Shengzhi Wang Xiangyang Miao 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2023年第5期503-508,I0001,共7页
Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-ti... Zero-dimensional environmentally friendly carbon quantum dots(CQDs)combined with two-di-mensional materials have a wide range of applications in optoelec-tronic devices.We combined steady-state and transient absorp-tion spectroscopies to study the energy transfer dynamics between CQDs and molybdenum disulfide(MoS_(2)).Transient absorption plots showed photoinduced absorption and stimulated emission features,which involved the intrinsic and defect states of CQDs.Adding MoS_(2)to CQDs solution,the lowest unoccupied molecular orbital of CQDs transferred energy to MoS_(2),which quenched the intrinsic emission at 390 nm.With addition of MoS_(2),CQD-MoS_(2)composites quenched defect emission at 490 nm and upward absorption,which originated from another energy transfer from the defect state.Two energy transfer paths between CQDs and MoS_(2)were efficiently manipulated by changing the concentration of MoS_(2),which laid a foundation for improving device performance. 展开更多
关键词 Energy transfer Transient absorption spectroscopy carbon quantum dot Molybdenum disulfide
下载PDF
CuS/CQDs/g-C_(3)N_(4)复合材料的合成及光催化性能
7
作者 于巧玲 刘成宝 +5 位作者 金涛 陈丰 钱君超 邱永斌 孟宪荣 陈志刚 《材料导报》 EI CAS CSCD 北大核心 2024年第11期41-47,共7页
本工作以三水合硝酸铜(Cu(NO_(3))_(2)·3H_(2)O)、硫脲(CH_(4)N_(2)S)和柠檬汁为原料,基于水热法获得碳量子点(Carbon quantum dots,CQDs),采用超声震荡法成功合成了CuS/CQDs/g-C_(3)N_(4)三相复合光催化材料,构建了p-n型异质结。... 本工作以三水合硝酸铜(Cu(NO_(3))_(2)·3H_(2)O)、硫脲(CH_(4)N_(2)S)和柠檬汁为原料,基于水热法获得碳量子点(Carbon quantum dots,CQDs),采用超声震荡法成功合成了CuS/CQDs/g-C_(3)N_(4)三相复合光催化材料,构建了p-n型异质结。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、光致发光光谱(PL)、氮气吸附-脱附测试(BET)和紫外-可见光漫反射光谱(UV-Vis DRS)等方法对材料的晶体结构、微观形貌和孔结构进行了详细表征。结果表明:三相复合材料界面结构构建良好,纯度高,各相分布均匀。光催化降解实验中,当CuS的含量为10%(质量分数)时,CuS/CQDs/g-C_(3)N_(4)复合材料的光催化降解效果达到最佳(72.1%)。复合材料在经过四次循环降解RhB后,其光催化降解效率仍然保持在65.2%。光催化实验结果表明,·O_(2)^(-)自由基是光催化降解产生的主要因素,h^(+)自由基的作用次之。 展开更多
关键词 石墨相氮化碳 碳量子点 过渡金属硫化物 异质结 光催化性能
下载PDF
The resistance switching performance of the memristor improved effectively by inserting carbon quantum dots(CQDs)for digital information processing
8
作者 Tianqi Yu Jie Li +5 位作者 Wei Lei Suhaidi Shafe Mohd Nazim Mohtar Nattha Jindapetch Paphavee van Dommelen Zhiwei Zhao 《Nano Research》 SCIE EI CSCD 2024年第9期8438-8446,共9页
As an emerging information device that adapts to development of the big data era,memristor has attracted much attention due to its advantage in processing massive data.However,the nucleation and growth of conductive f... As an emerging information device that adapts to development of the big data era,memristor has attracted much attention due to its advantage in processing massive data.However,the nucleation and growth of conductive filaments often exhibit randomness and instability,which undoubtedly leads to a wide and discrete range of switching parameters,damaging the electrical performance of device.In this work,a strategy of inserting carbon quantum dots(CQDs)into graphene oxide(GO)resistance layer is utilized to improve the stability of the switching parameters and the reliability of the device is improved.Compared with GO-based devices,GO/CQDs/GO-based devices exhibit a more stable resistance switching curve,low power,lower and more concentrated threshold voltage parameters with lower variation coefficient,faster switching speed,and more stable retention and endurance.The cause-inducing performance improvement may be attributed to the local electric field generated by CQDs in resistance switching that effectively guides the formation and rupture of conductive filaments,which optimizes the effective migration distance of Ag^(+),thereby improving the uniformity of resistance switching.Additionally,a convolutional neural network model is constructed to identify the CIFAR-10 data set,showing the high recognition accuracy of online and offline learning.The cross-kernel structure is used to further implement convolutional image processing through multiplication and accumulation operations.This work provides a solution to improve the performance of memristors,which can contribute to developing digital information processing. 展开更多
关键词 carbon quantum dots MEMRISTOR UNIFORMITY convolutional neural network convolutional image processing
原文传递
Integrated in-memory sensor and computing of artificial vision system based on reversible bonding transition-induced nitrogen-doped carbon quantum dots (N-CQDs)
9
作者 Tianqi Yu Jie Li +5 位作者 Wei Lei Suhaidi Shafe Mohd Nazim Mohtar Nattha Jindapetch Paphavee van Dommelen Zhiwei Zhao 《Nano Research》 SCIE EI CSCD 2024年第11期10049-10057,共9页
Carbon quantum dots (CQDs) have been used in memristors due to their attractive optical and electronic properties, which are considered candidates for brain-inspired computing devices. In this work, the performance of... Carbon quantum dots (CQDs) have been used in memristors due to their attractive optical and electronic properties, which are considered candidates for brain-inspired computing devices. In this work, the performance of CQDs-based memristors is improved by utilizing nitrogen-doping. In contrast, nitrogen-doped CQDs (N-CQDs)-based optoelectronic memristors can be driven with smaller programming voltages (−0.6 to 0.7 V) and exhibit lower powers (78 nW/0.29 µW). The physical mechanism can be attributed to the reversible transition between C–N and C=N with lower binding energy induced by the electric field and the generation of photogenerated carriers by ultraviolet light irradiation, which adjusts the conductivity of the initial N-CQDs to implement resistance switching. Importantly, the convolutional image processing based on various cross kernels is efficiently demonstrated by stable multi-level storage properties. An N-CQDs-based optoelectronic reservoir computing implements impressively high accuracy in both no noise and various noise modes when recognizing the Modified National Institute of Standards and Technology (MNIST) dataset. It illustrates that N-CQDs-based memristors provide a novel strategy for developing artificial vision system with integrated in-memory sensor and computing. 展开更多
关键词 nitrogen-doped carbon quantum dots(N-cqds) optoelectronic memristor reversible bonding transition convolutional image processing reservoir computing
原文传递
CQDs/C_(3)N_(5)复合催化剂光催化氧化去除NO
10
作者 叶杞宏 黄汉源 杨婧羚 《化工环保》 CAS CSCD 北大核心 2024年第6期859-867,共9页
以碳量子点(CQDs)和C_(3)N_(5)为原料,采用浸渍法制备了CQDs/C_(3)N_(5)复合光催化剂,采用多种手段进行了表征,并考察了CQDs/C_(3)N_(5)对NO的光催化氧化效果及其反应机理。表征结果显示:CQDs纳米颗粒均匀分散在C_(3)N_(5)的表面,且未... 以碳量子点(CQDs)和C_(3)N_(5)为原料,采用浸渍法制备了CQDs/C_(3)N_(5)复合光催化剂,采用多种手段进行了表征,并考察了CQDs/C_(3)N_(5)对NO的光催化氧化效果及其反应机理。表征结果显示:CQDs纳米颗粒均匀分散在C_(3)N_(5)的表面,且未出现团聚;与C_(3)N_(5)相比,CQDs/C_(3)N_(5)的带隙结构发生了变化,表现出更强的光响应能力和更高的载流子利用效率。在质量空速(WHSV)为1.2×10^(6)mL/(g·h)、光反应时间为30 min的条件下,经CQDs-8/C_(3)N_(5)(CQDs与C_(3)N_(5)的质量比为8%)光催化氧化处理后,NO去除率为77.9%;CQDs-8/C_(3)N_(5)具有良好的耐湿性、重复使用性和运行稳定性;CQDs-8/C_(3)N_(5)光催化氧化NO的主要活性物种为·O_(2)^(-)、·OH、光生电子和空穴。反应机理为:在光照条件下,CQDs/C_(3)N_(5)被激发产生电子和空穴;电子转移至导带与O_(2)分子结合产生·O_(2)^(-),或还原NO_(2)为NO_(2)^(-);空穴转移至价带,促进·OH的产生,进而将NO氧化为NO_(2);NO和NO_(2)^(-)与·O_(2)^(-)反应产生NO_(3)^(-)。 展开更多
关键词 C_(3)N_(5) 碳量子点 光催化 NO 载流子分离
下载PDF
Ala-CQDs/g-C_(3)N_(4)复合光催化剂的制备及其光催化性能研究
11
作者 靳爱玲 孙苏婉 +1 位作者 时凯歌 杨明铭 《云南化工》 CAS 2024年第11期30-34,共5页
以尿素为前驱体,以葡萄糖、柠檬酸为碳源,L-丙氨酸为氮源,通过水热法制备出不同质量比的AC/CN复合光催化剂。通过XRD、UV-Vis、FT-IR和荧光对复合光催化剂的晶相结构、光吸收特性、结构组成及光学性质进行了表征,并研究了其在可见光下... 以尿素为前驱体,以葡萄糖、柠檬酸为碳源,L-丙氨酸为氮源,通过水热法制备出不同质量比的AC/CN复合光催化剂。通过XRD、UV-Vis、FT-IR和荧光对复合光催化剂的晶相结构、光吸收特性、结构组成及光学性质进行了表征,并研究了其在可见光下对亚甲基蓝的降解活性。实验表明:AC/CN复合光催化剂相较于纯相CN提高了对可见光的利用率,并且有效地抑制了载流子空穴复合效率,提高了催化活性,当AC和CN的质量比为1∶3时表现为最佳光催化性能——可见光照射120 min后,AC/CN复合光催化剂对亚甲基蓝的总降解率达到43%,是纯相石墨相氮化碳光降解率的1.96倍。 展开更多
关键词 石墨相氮化碳/碳量子点 可见光催化 有机污染物降解
下载PDF
Carbon quantum dots for advanced electrocatalysis 被引量:16
12
作者 Lin Tian Zhao Li +3 位作者 Peng Wang Xiuhui Zhai Xiang Wang Tongxiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期279-294,共16页
Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface ar... Zero-dimensional(0D)carbon quantum dots(CQDs),as a nanocarbon material in the carbon family,have garnered increasing attention in recent years due to their outstanding features of low cost,nontoxicity,large surface area,high electrical conductivity,and rich surface functional groups.By virtue of their rapid electron transfer and large surface area,CQDs also emerge as promising functional materials for the applications in energy-conversion sectors through electrocatalysis.Besides,the rich functional groups on the surface of CQDs offer abundant anchoring sites and active sites for the engineering of multicomponent and high-performance composite materials.More importantly,the heteroatom in the CQDs could effectively tailor the charge distribution to promote the electron transfer via internal interactions,which is crucial to the enhancement of electrocatalytic performance.Herein,an overview about recent progress in preparing CQDs-based composites and employing them as promising electrode materials to promote the catalytic activity and stability for electrocatalysis is provided.The introduced CQDs could enhance the conductivity,modify the morphology and crystal phase,optimize the electronic structure,and provide more active centers and defect sites of composites.After establishing a deep understanding of the relationship between CQDs and electrocatalytic performances,the issues and challenges for the development of CQDs-based composites are discussed. 展开更多
关键词 carbon quantum dots CONDUCTIVITY Electron transfer ELECTROCATALYSIS
下载PDF
Graphitic Carbon Quantum Dots Modified Nickel Cobalt Sulfide as Cathode Materials for Alkaline Aqueous Batteries 被引量:11
13
作者 Yirong Zhu Jingying Li +6 位作者 Xiaoru Yun Ganggang Zhao Peng Ge Guoqiang Zou Yong Liu Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第2期1-18,共18页
Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield w... Carbon quantum dots(CQDs)as a new class of emerging materials have gradually drawn researchers’concern in recent years.In this work,the graphitic CQDs are prepared through a scalable approach,achieving a high yield with more than 50%.The obtained CQDs are further used as structure-directing and conductive agents to synthesize novel N,S-CQDs/NiCo2S4 composite cathode materials,manifesting the enhanced electrochemical properties resulted from the synergistic effect of highly conductive N,S-codoped CQDs offering fast electronic transport and unique micro-/nanostructured NiCo2S4 microspheres with Faradaic redox characteristic contributing large capacity.Moreover,the nitrogen-doped reduced graphene oxide(N-rGO)/Fe2O3 composite anode materials exhibit ultrahigh specific capacity as well as significantly improved rate property and cycle performance originating from the high-capacity prism-like Fe2O3 hexahedrons tightly wrapped by highly conductive N-rGO.A novel alkaline aqueous battery assembled by these materials displays a specific energy(50.2 Wh kg^−1),ultrahigh specific power(9.7 kW kg^−1)and excellent cycling performance with 91.5%of capacity retention at 3 A g^−1 for 5000 cycles.The present research offers a valuable guidance for the exploitation of advanced energy storage devices by the rational design and selection of battery/capacitive composite materials. 展开更多
关键词 Energy storage Alkaline aqueous batteries carbon quantum dot Nickel cobalt sulfide
下载PDF
Multifarious roles of carbon quantum dots in heterogeneous photocatalysis 被引量:6
14
作者 Kang-Qiang Lu Quan Quan +1 位作者 Nan Zhang Yi-Jun Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期927-935,共9页
As a new member of carbon material family, carbon quantum dots (CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications. Due to the unique microstructure and op... As a new member of carbon material family, carbon quantum dots (CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications. Due to the unique microstructure and optical properties, the roles of CQDs played in the CQDs-based photocatalytic systems have been found to be diverse with the continuous researches in this regard. Herein, we provide a concise minireview to elaborate the multifarious roles of CQDs in photocatalysis, including photoelectron mediator and acceptor, photosensitizer, photocatalyst, reducing agent for metal salt, enhancing adsorption capacity and spectral converter. In addition, the perspectives on future research trends and challenges are proposed, which are anticipated to stimulate further research into this promising field on designing a variety of efficient CQDs-based photocatalysts for solar energy conversion. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved. 展开更多
关键词 carbon quantum dots Multifarious roles Photocatalysis applications Solar energy conversion
下载PDF
ZnIn_2S_4 flowerlike microspheres embedded with carbon quantum dots for efficient photocatalytic reduction of Cr(Ⅵ) 被引量:7
15
作者 Baibai Liu Xinjuan Liu +6 位作者 Lei Li Jianwei Li Can Li Yinyan Gong Lengyuan Niu Xinsheng Zhao Chang Q.Sun 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第12期1901-1909,共9页
Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike ... Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike microspheres via a facile solvothermal method.The ZnIn2S4/carbon quantum dot flowerlike microspheres display enhanced photocatalytic and photoelectrochemical activity compared with that of pure ZnIn2S4.With a content of only 0.5 wt%carbon quantum dots,93%of Cr(VI)is reduced under visible‐light irradiation at 40 min.As a co‐catalyst,the carbon quantum dots improve the light absorption and lengthen the lifetime of charge carriers,consequently enhancing the photocatalytic and photoelectrochemical activity. 展开更多
关键词 ZnIn2S4 carbon quantum dots Flowerlike microspheres Co‐catalyst Photoelectronchemical
下载PDF
Synthesis of Fluorescent Carbon Quantum Dots and Their Application in the Plant Cell Imaging 被引量:2
16
作者 DING Liyun LI Junli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1546-1550,共5页
Carbon quantum dots(CQDs) exhibit tremendous advantages for plant growth study due to its strong fluorescence and good biocompatibility. The fluorescent CQDs were synthesized by the onestep microwave method with the r... Carbon quantum dots(CQDs) exhibit tremendous advantages for plant growth study due to its strong fluorescence and good biocompatibility. The fluorescent CQDs were synthesized by the onestep microwave method with the raw materials of citric acid(CA) and urea(UR), and expressed a unique green fluorescence with the optimal excitation wavelength of over 400 nm through adjusting the doping of N elements. It is demonstrated that CQDs can act as deliver media in plant and fluorescent probes for plant cell imaging through directly cultivated in the seedlings of melon and wheat, respectively. Based on the effects of the fluorescent CQDs on plants growth, we can further study the mechanisms of the ions transport in plants. 展开更多
关键词 carbon quantum dots plant cell imaging microwave method
下载PDF
Curtailing Carbon Usage with Addition of Functionalized NiFe2O4 Quantum Dots:Toward More Practical S Cathodes for Li-S Cells 被引量:4
17
作者 Ning Li Ting Meng +5 位作者 Lai Ma Han Zhang JiaJia Yao Maowen Xu Chang Ming Li Jian Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期1-12,共12页
Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of po... Smartcombination of manifold carbonaceous materials with admirable functionalities(like full of pores/functional groups,high specific surface area) is still a mainstream/preferential way to address knotty issues of polysulfides dissolution/shuttling and poor electrical conductivity for S-based cathodes.However,extensive use of conductive carbon fillers in cell designs/technology would induce electrolytic overconsumption and thereby shelve high-energy-density promise of Li-S cells.To cut down carbon usage,we propose the incorporation of multi-functionalized NiFe2O4 quantum dots(QDs) as affordable additive substitutes.The total carbon content can be greatly curtailed from 26%(in traditional S/C cathodes) to a low/commercial mass ratio(~5%).Particularly,note that NiFe2O4 QDs additives own superb chemisorption interactions with soluble Li2Sn molecules and proper catalytic features facilitating polysulfide phase conversions and can also strengthen charge-transfer capability/redox kinetics of overall cathode systems.Benefiting from these intrinsic properties,such hybrid cathodes demonstrate prominent rate behaviors(decent capacity retention with ~526 mAh g^-1 even at 5 A g^-1) and stable cyclic performance in LiNO3-free electrolytes(only ~0.08% capacity decay per cycle in 500 cycles at 0.2 A g^-1).This work may arouse tremendous research interest in seeking other alternative QDs and offer an economical/more applicable methodology to construct low-carbon-content electrodes for practical usage. 展开更多
关键词 carbon usage reduction NiFe_2O_4 quantum dots Additive substitute Practical S cathode Li-S cells
下载PDF
Amperometric Hydrogen Peroxide Biosensor Based on Multiwall Carbon Nanotubes and Cadmium Sulfide Quantum Dots 被引量:1
18
作者 ZHANG Jin-lei TAN Xue-cai +4 位作者 ZHAO Dan-dan TAN Sheng-wei HUANG Zeng-wei MI Yan HUANG Zai-yin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第4期541-545,共5页
A novel third-generation hydrogen peroxide(H2O2) biosensor(Hb/CdS/MWNTs/GCE) was fabricated through hemoglobin(Hb) adsorbed onto the mercaptoacetic acid modified CdS QDs/carboxyl multiwall carbon nanotubes'(MW... A novel third-generation hydrogen peroxide(H2O2) biosensor(Hb/CdS/MWNTs/GCE) was fabricated through hemoglobin(Hb) adsorbed onto the mercaptoacetic acid modified CdS QDs/carboxyl multiwall carbon nanotubes'(MWNTs) films. Cyclic voltammogram of Hb/CdS/MWNTs/GCE showed a pair of well-defined and quasi-reversible redox peaks with a formal potential(E^0) of-0.230 V(vs. Ag/AgCl) in 0.1 mol/L pH=8.0 phosphate buffer solution(PBS), which was the characteristic of the Hb heme Fe(Ⅲ)/Fe(Ⅱ) redox couple. The biosensor shows an excellent electrocatalytic activity to the reduction of H2O2. The response time of the designed biosensor to H202 at a potential of-0.30 V was less than 2 s and linear relationships were obtained in the concentration ranges of 2.0×10^-6-2.7×10^-3 mol/L and 2.7×10^-3-7.7×10^-3 mol/L with a detection limit of 3.0×10^-7 mol/L(S/N=3). The apparent Michaelis-Menten constant Km was estimated to be 1.324 mmol/L that illustrated the excellent biological activity of the fixed Hb. 展开更多
关键词 HEMOGLOBIN CdS quantum dot Multi-wall carbon nanotube BIOSENSOR Direct electrochemistry
下载PDF
Surface defect-rich ceria quantum dots anchored on sulfur-doped carbon nitride nanotubes with enhanced charge separation for solar hydrogen production 被引量:2
19
作者 Mengru Li Changfeng Chen +3 位作者 Liping Xu Yushuai Jia Yan Liu Xin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期51-59,I0003,共10页
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were ... Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce^(3+) ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability. 展开更多
关键词 Photocatalytic hydrogen evolution Ceria quantum dots Sulfur-doped carbon nitride nanotubes Surface defects Charge separation
下载PDF
Photocatalytic degradation of organic pollutants using green oil palm frond-derived carbon quantum dots/titanium dioxide as multifunctional photocatalysts under visible light radiation 被引量:2
20
作者 Zeng Wei Heng Woon Chan Chong +2 位作者 Yean Ling Pang Lan Ching Sim Chai Hoon Koo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第11期21-34,共14页
The present work suggested the use of waste oil palm frond as an alternative precursor for nitrogendoped carbon quantum dots(NCQDs)and proposed a straightforward in-situ hydrothermal method for the preparation of NCQD... The present work suggested the use of waste oil palm frond as an alternative precursor for nitrogendoped carbon quantum dots(NCQDs)and proposed a straightforward in-situ hydrothermal method for the preparation of NCQDs/TiO_(2)nanocomposites.The elemental composition,morphological,structural and optical characteristics of NCQDs/TiO_(2)nanocomposites have been comprehensively investigated.The successful grafting of NCQDs on TiO_(2)matrix was confirmed by the formation of Ti AOAC bond and the electronic coupling between theπ-states of NCQDs and the conduction band of TiO_(2).For the first time,the oil palm frond-derived NCQDs/TiO_(2)was adopted in the photodegradation of methylene blue(MB)under visible-light irradiation.As a result,the photocatalytic efficiency of NCQDs/TiO_(2)nanocomposites(86.16%)was 2.85 times higher than its counterpart TiO_(2)(30.18%).The enhanced performance of nanocomposites was attributed to the pivotal roles of NCQDs serving as electron mediator and visiblelight harvester.Besides,the optimal NCQDs loading was determined at 4 ml while the removal efficiency of NCQDs/TiO_(2)-4 was the highest at a catalyst dosage of 1 g.L^(-1)under alkaline condition.This research work is important as it proposed a new insight to the preparation of biomass-based NCQDs/TiO_(2)using a facile synthetic method,which offers a green and sustainable water remediation technology. 展开更多
关键词 Oil palm frond biomass N-doped carbon quantum dots Titanium-dioxide In-situ hydrothermal Visible light photocatalysis Methylene blue
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部