Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selectiv...Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.展开更多
The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achie...The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.展开更多
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ...Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.展开更多
As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a cruc...As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.展开更多
Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,t...Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,this paper constructs a basic regression model to study the"carbon reduction"effect,mechanism of action,and heterogeneity of green finance.The study finds that:the development of green finance significantly inhibits carbon emissions and has an obvious"carbon reduction"effect;green technology innovation has a mediating effect on the carbon emission reduction effect of green finance;in regions with a high level of economic development or a high degree of marketization,the"carbon reduction"effect of green finance is significant.展开更多
Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological lev...Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.展开更多
The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)...The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)RR still need to be improved because of the competing reaction(hydrogen evolution reaction).In this study,for the first time,we have demonstrated dual atomic catalytic sites for CO_(2)RR from a core-shell hybrid of the covalent-organic framework and the metal-organic framework.Due to abundant dual atomic sites(with CoN_(4)O and ZnN_(4) of 2.47 and 11.05 wt.%,respectively)on hollow carbon,the catalyst promoted catalysis of CO_(2)RR,with the highest Faradic efficiency for CO of 92.6%at-0.8 V and a turnover frequency value of 1370.24 h^(-1) at-1.0 V.More importantly,the activity and selectivity of the catalyst were well retained for 30 h.The theoretical calculation further revealed that CoN_(4)O was the main site for CO_(2)RR,and the activity of and selectivity for Zn sites were also improved because of the synergetic roles.展开更多
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor select...Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed.展开更多
The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(...The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(g) orbital occupancy of Pd by constructing composition-controllable Pd-Au metallic aerogels(MAs),optimizing the d-band center of Pd to achieve excellent performance for electrochemical carbon dioxide reduction reaction(CO_(2)RR).Specifically,Pd_(1)Au_(2) MAs achieve almost 100% Faraday efficiency(FE) of CO in the range of-0.40 to-0.80 V vs.reversible hydrogen electrode(RHE),as well as the long-term stability,being one of the best Pd-based materials for CO_(2)RR.The X-ray photoelectron spectroscopy(XPS) results and density functional theory(DFT) calculations demonstrate that the introduction of Au modulates the Pd e_(g) orbital occupancy,which significantly weakens *CO adsorption on Pd,reduces the CO_(2)RR energy barrier and consequently improves the electrocatalytic activity and stability for long-term applications.Our work highlights a new strategy for designing efficient electrocatalysts for CO_(2)RR and beyond.展开更多
This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in Chi...This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in China have severe off-balance sheet carbon reduction risks before implementing the carbon emission trading system(CETS).Through the staggered difference-in-difference(DID)model and the propen-sity score matching-DID model,the impact of CETS on reducing the risk of stock price crashes is examined using data from China’s A-share heavily polluting listed companies from 2007 to 2019.The results of this study are as follows:(1)CETS can significantly reduce the risk of stock price crashes for heavily polluting companies in the pilot areas.Specifically,CETS reduces the skewness(negative conditional skewness)and down-to-up volatility of the firm-specific weekly returns by 8.7%and 7.6%,respectively.(2)Heterogeneity analysis further shows that the impacts of CETS on the risk of stock price crashes are more significant for heavily polluting enterprises with the bear market condition,short-sighted management,and intensive air pollution.(3)Mechanism tests show that CETS can reduce analysts’coverage of heavy polluters,reducing the risk of stock price crashes.This study reveals the role of CETS from the stock price crash risk perspective and helps to clarify the relationship between climatic risk and corporate financial risk.展开更多
Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction...Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface.展开更多
On the basis of existing research,carbon emission reduction technologies in production,processing,packaging,transportation and storage of the food system were summarized,and their application effects were analyzed.In ...On the basis of existing research,carbon emission reduction technologies in production,processing,packaging,transportation and storage of the food system were summarized,and their application effects were analyzed.In view of the inherent inadequacy of carbon emission reduction technologies in Chinese food system,starting from carbon labeling technologies and ESG system of the food industry,the unsoundness of the carbon emission reduction evaluation system and the high cost of related technology promotion,countermeasures such as strengthening top-level design,encouraging and supporting the development of new carbon emission reduction technologies,and improving carbon emission reduction technology subsidies were proposed by drawing on domestic and international experiences.展开更多
Since the 21^(st)century,the problem of global warming has been prominent,and the problem of climate change has attracted worldwide attention.All countries have issued urban climate adaptation planning policy document...Since the 21^(st)century,the problem of global warming has been prominent,and the problem of climate change has attracted worldwide attention.All countries have issued urban climate adaptation planning policy documents to address the current climate problem.At the same time,the proposal of the“double carbon”vision allows us to focus on the carbon emission reduction of cities and buildings.In addition to the implementation of the direct carbon reduction approach in the whole life cycle of construction,the functional role of indirect carbon reduction cannot be underestimated.By analyzing the domestic and foreign urban climate adaptation planning policy documents,summarizing the indirect carbon reduction approaches,and analyzing the feasibility of the indirect carbon reduction and emission reduction methods from the perspective of urban climate adaptation planning,the indirect carbon reduction adaptation strategy is proposed,which provides a reference for the implementation of urban climate adaptation planning and the target completion of reaching the carbon neutralization and peak on time.展开更多
This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life...This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems.展开更多
Continuous accumulation and emission into the atmosphere of anthropogenic carbon dioxide(CO_(2)),a major greenhouse gas,has been recognized as a primary contributor to climate change associated with the global warming...Continuous accumulation and emission into the atmosphere of anthropogenic carbon dioxide(CO_(2)),a major greenhouse gas,has been recognized as a primary contributor to climate change associated with the global warming and acidification of oceans.This has led to drastic changes in the natural ecosystem,and hence an unhealthy ecological environment for human society.Thus,the effective mitigation of the ever increasing CO_(2)emission has been recognized as the most important global challenge.To achieve zero carbon footprint,novel materials and approaches are required for potentially reducing the CO_(2)release,while our current fossil-fuel-based energy must be replaced by renewable energy free from emissions.In this paper,porous carbons with hierarchical pore structures are promising for CO_(2)adsorption and electrochemical CO_(2)reduction owing to their high specific surface area,excellent catalytic performance,low cost and long-term stability.Since efficient gas-phased(electro)catalysis involves the access of reactants to active sites at the gas-liquid-solid triple phase,the hierarchical porous carbon materials possess multiple advantages for various CO_(2)-related applications with enhanced volumetric and gravimetric activities(e.g.,CO_(2)uptake and current density)for practical operations.Recent studies have demonstrated that porous carbon materials exhibited notable activities as CO_(2)adsorbents and provided facile conducting pathways and mass diffusion channels for efficient electrochemical CO_(2)reduction even under the high current operation conditions.Herein,we summarize recent advances in porous carbon materials for CO_(2)capture,storage,and electrochemical conversion.Prospectives and challenges on the rational design of porous carbon materials for scalable and practical CO_(2)capture and conversion are also discussed.展开更多
The life-cycle assessment method,which originates from general products and services,has gradually come to be applied to investigations of the life-cycle carbon emissions(LCCE)of buildings.A literature review was cond...The life-cycle assessment method,which originates from general products and services,has gradually come to be applied to investigations of the life-cycle carbon emissions(LCCE)of buildings.A literature review was conducted to clarify LCCE implications,calculations,and reductions in the context of buildings.A total of 826 global building carbon emission calculation cases were obtained from 161 studies based on the framework of the building life-cycle stage division stipulated by ISO 21930 and the basic principles of the emission factor(EF)approach.The carbon emission calculation methods and results are discussed herein,based on the modules of production,construction,use,end-of-life,and supplementary benefits.According to the hotspot distribution of a building’s carbon emissions,carbon reduction strategies are classified into six groups for technical content and benefits analysis,including reducing the activity data pertaining to building materials and energy,reducing the carbon EFs of the building materials and energy,and exploiting the advantages of supplementary benefits.The research gaps and challenges in current building LCCE studies are summarized in terms of research goals and ideas,calculation methods,basic parameters,and carbon reduction strategies;development suggestions are also proposed.展开更多
The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped c...The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR.展开更多
Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typ...Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.展开更多
Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO_(2)to formic acid(HCOOH),which are composed of petal-shaped Bi_(2)O_(2)CO_(3)(BOC)that spontaneously formed from Bi thin film...Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO_(2)to formic acid(HCOOH),which are composed of petal-shaped Bi_(2)O_(2)CO_(3)(BOC)that spontaneously formed from Bi thin film in aqueous carbonate solution at room temperature.During the electrochemical reduction process,the BOC petals transform to reduced BOC(R-BOC)consisting of individual BOC and Bi domains.Lattice mismatch between both domains induces biaxial strain at the interfaces.Density functional theory calculations suggest that the tensile strain on the Bi domain stabilizes the*OCHO intermediate,reducing the thermodynamic barrier toward CO_(2)conversion to HCOOH.Together with the thermodynamic benefit and the unique nanoporous petal-shaped morphology,R-BOC petals have a superior Faradaic efficiency of 95.9%at-0.8 V_(RHE)for the electrochemical conversion of CO_(2)to HCOOH.This work demonstrates that the spontaneously formed binary phases with desirable lattice strain can increase the activity of bismuth catalysts to the CO_(2)reduction reaction;such a strategy can be applicable in design of various electrocatalysts.展开更多
Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Here...Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N_(2)-bidentate(note that N_(2)-bidentate site=N^N-bidentate site;N_(2)≠dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N_(2)-bidentate site,a Cu SAC with isolated undercoordinated Cu-N_(2) sites(Cu1.0/N_(2)-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N_(2)-GDY exhibits the highest Faradaic efficiency(FE)of 80.6% for CH_(4) in electrocatalytic reduction of CO_(2) at-0.96 V vs.RHE,and the partial current density of CH_(4) is 160 mA cm^(-2).The selectivity for CH_(4) is maintained above 70% when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N_(2)-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N_(2) sites are more favorable in generating key ^(*)COOH and ^(*)CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N_(2) sites toward efficient electrocatalysis.展开更多
基金the Science and Technology Key Project of Anhui Province,China(No.2022e03020004).
文摘Lithium recovery from spent lithium-ion batteries(LIBs)have attracted extensive attention due to the skyrocketing price of lithium.The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent Li-CoO_(2)(LCO)cathodes to overcome the incomplete recovery and loss of lithium during the recycling process.The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO_(3)under a suitable temperature to control the reduced state of the cobalt oxide.The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium.The results showed that 99.10%of the whole lithium could be recovered as Li2CO_(3)with a purity of 99.55%.This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
基金supported by the National Key Research and Development Programs(2021YFB3704201 and 2021YFB3700902).
文摘The industrial sector is the primary source of carbon emissions in China.In pursuit of meeting its carbon reduction targets,China aims to promote resource consumption sustainability,reduce energy consumption,and achieve carbon neutrality within its processing industries.An effective strategy to promote energy savings and carbon reduction throughout the life cycle of materials is by applying life cycle engineering technology.This strategy aims to attain an optimal solution for material performance,resource consumption,and environmental impact.In this study,five types of technologies were considered:raw material replacement,process reengineering,fuel replacement,energy recycling and reutilization,and material recycling and reutilization.The meaning,methodology,and development status of life cycle engineering technology abroad and domestically are discussed in detail.A multidimensional analysis of ecological design was conducted from the perspectives of resource and energy consumption,carbon emissions,product performance,and recycling of secondary resources in a manufacturing process.This coupled with an integrated method to analyze carbon emissions in the entire life cycle of a material process industry was applied to the nonferrous industry,as an example.The results provide effective ideas and solutions for achieving low or zero carbon emission production in the Chinese industry as recycled aluminum and primary aluminum based on advanced technologies had reduced resource consumption and emissions as compared to primary aluminum production.
基金the financial support from the Postdoctoral Science Foundation of China(2022M720131)Spring Sunshine Collaborative Research Project of the Ministry of Education(202201660)+3 种基金Youth Project of Gansu Natural Science Foundation(22JR5RA542)General Project of Gansu Philosophy and Social Science Foundation(2022YB014)National Natural Science Foundation of China(72034003,72243006,and 71874074)Fundamental Research Funds for the Central Universities(2023lzdxjbkyzx008,lzujbky-2021-sp72)。
文摘Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.
文摘As the most significant green ecological resource in densely populated and economically developed areas,urban landscaping plays a pivotal role in carbon sink value and multiple ecosystem service functions.It is a crucial element in the advancement of green and low-carbon initiatives in China’s major cities and the realization of a carbon-neutral vision.By analyzing the relationship between carbon emission reduction and urban landscaping,the paper sorts out and summarizes the basic principles of urban landscaping design,proposes the role of landscape design in urban landscaping,and plans countermeasures for carbon reduction in urban landscaping,with a view to optimizing the construction and management of urban landscaping.
文摘Under the background of"dual-carbon",green finance is an important way to promote carbon emission reduction and realize the development of a low-carbon economy.Using provincial panel data from 2000 to 2020,this paper constructs a basic regression model to study the"carbon reduction"effect,mechanism of action,and heterogeneity of green finance.The study finds that:the development of green finance significantly inhibits carbon emissions and has an obvious"carbon reduction"effect;green technology innovation has a mediating effect on the carbon emission reduction effect of green finance;in regions with a high level of economic development or a high degree of marketization,the"carbon reduction"effect of green finance is significant.
基金supported by the Henan Institute for Chinese Development Strategy of Engineering&Technology(Grant No.2022HENZDA02)by the Science&Technology Department of Sichuan Province Project(Grant No.2021YFH0010).
文摘Carbon neutrality(or climate neutrality)has been a global consensus,and international experience exchange is essential.Given the differences in the degree of social development,resource endowment and technological level,each country should build a carbon-neutral plan based on its national conditions.Compared with other major developed countries(e.g.,Germany,the United States and Japan),China's carbon neutrality has much bigger challenges,including a heavy and time-pressured carbon reduction task and the current energy structure that is over-dependent on fossil fuels.Here we provide a comprehensive review of the status and prospects of the key technologies for low-carbon,near-zero carbon,and negative carbon emissions.Technological innovations associated with coal,oil-gas and hydrogen industries and their future potential in reducing carbon emissions are particularly explained and assessed.Based on integrated analysis of international experience from the world's major developed countries,in-depth knowledge of the current and future technologies,and China's energy and ecological resources potential,five lessons for the implementation of China's carbon neutrality are proposed:(1)transformation of energy production pattern from a coal-dominated pattern to a diversified renewable energy pattern;(2)renewable power-to-X and large-scale underground energy storage;(3)integration of green hydrogen production,storage,transport and utilization;(4)construction of clean energy systems based on smart sector coupling(ENSYSCO);(5)improvement of ecosystem carbon sinks both in nationwide forest land and potential desert in Northwest China.This paper provides an international perspective for a better understanding of the challenges and opportunities of carbon neutrality in China,and can serve as a theoretical foundation for medium-long term carbon neutral policy formulation.
基金Q.Xu acknowledges financial support from the Natural Science Foundation of Shanghai(20ZR1464000)G.Zeng is grateful for the support from the National Natural Science Foundation of China(21878322,22075309)the Science and Technology Commission of Shanghai(19ZR1479200).The authors also thank the Shanghai Synchrotron Radiation Facility for XAFS measurements at Beamline BL14w1.
文摘The electrochemical carbon dioxide reduction reaction(CO_(2)RR)for highvalue-added products is a promising strategy to tackle excessive CO_(2) emissions.However,the activity of and selectivity for catalysts for CO_(2)RR still need to be improved because of the competing reaction(hydrogen evolution reaction).In this study,for the first time,we have demonstrated dual atomic catalytic sites for CO_(2)RR from a core-shell hybrid of the covalent-organic framework and the metal-organic framework.Due to abundant dual atomic sites(with CoN_(4)O and ZnN_(4) of 2.47 and 11.05 wt.%,respectively)on hollow carbon,the catalyst promoted catalysis of CO_(2)RR,with the highest Faradic efficiency for CO of 92.6%at-0.8 V and a turnover frequency value of 1370.24 h^(-1) at-1.0 V.More importantly,the activity and selectivity of the catalyst were well retained for 30 h.The theoretical calculation further revealed that CoN_(4)O was the main site for CO_(2)RR,and the activity of and selectivity for Zn sites were also improved because of the synergetic roles.
基金This project was supported by the National Natural Science Foundation of China(U19A2017,22272206,51976143)Natural Science Foundation of Hunan Province(S2021JJMSXM3153).
文摘Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides an attractive approach to carbon capture and utilization for the production high-value-added products.However,CO_(2)RR still suffers from poor selectivity and low current density due to its sluggish kinetics and multitudinous reaction pathways.Single-atom catalysts(SACs)demonstrate outstanding activity,excellent selectivity,and remarkable atom utilization efficiency,which give impetus to the search for electrocatalytic processes aiming at high selectivity.There appears significant activity in the development of efficient SACs for CO_(2)RR,while the density of the atomic sites remains a considerable barrier to be overcome.To construct high-metal-loading SACs,aggregation must be prevented,and thus novel strategies are required.The key to creating high-density atomically dispersed sites is designing enough anchoring sites,normally defects,to stabilize the highly mobile separated metal atoms.In this review,we summarized the advances in developing high-loading SACs through defect engineering,with a focus on the synthesis strategies to achieve high atomic site loading.Finally,the future opportunities and challenges for CO_(2)RR in the area of high-loading single-atom electrocatalysts are also discussed.
基金financially supported by the National Natural Science Foundation of China (NSFC) (Grant No. 22105087)Natural Science Foundation of Jiangsu Province (Grant No. BK20210446)。
文摘The electronic structure of electrocatalysts plays a critical role in energy conversion,whereas for an efficient catalyst,it is challenging to modulate the orbitals.Herein,we present a new strategy to modulate the e_(g) orbital occupancy of Pd by constructing composition-controllable Pd-Au metallic aerogels(MAs),optimizing the d-band center of Pd to achieve excellent performance for electrochemical carbon dioxide reduction reaction(CO_(2)RR).Specifically,Pd_(1)Au_(2) MAs achieve almost 100% Faraday efficiency(FE) of CO in the range of-0.40 to-0.80 V vs.reversible hydrogen electrode(RHE),as well as the long-term stability,being one of the best Pd-based materials for CO_(2)RR.The X-ray photoelectron spectroscopy(XPS) results and density functional theory(DFT) calculations demonstrate that the introduction of Au modulates the Pd e_(g) orbital occupancy,which significantly weakens *CO adsorption on Pd,reduces the CO_(2)RR energy barrier and consequently improves the electrocatalytic activity and stability for long-term applications.Our work highlights a new strategy for designing efficient electrocatalysts for CO_(2)RR and beyond.
基金supports from the National Natural Science Foundation of China(under Grants No.72073105,71903002,and 71774122)the Natural Science Foundation of Anhui Province,China(under Grant No.1908085QG309)are greatly acknowledged.
文摘This study reveals the inconsistencies between the negative externalities of carbon emissions and the recognition condition of accounting statements.Hence,the study identifies that heavily polluting enterprises in China have severe off-balance sheet carbon reduction risks before implementing the carbon emission trading system(CETS).Through the staggered difference-in-difference(DID)model and the propen-sity score matching-DID model,the impact of CETS on reducing the risk of stock price crashes is examined using data from China’s A-share heavily polluting listed companies from 2007 to 2019.The results of this study are as follows:(1)CETS can significantly reduce the risk of stock price crashes for heavily polluting companies in the pilot areas.Specifically,CETS reduces the skewness(negative conditional skewness)and down-to-up volatility of the firm-specific weekly returns by 8.7%and 7.6%,respectively.(2)Heterogeneity analysis further shows that the impacts of CETS on the risk of stock price crashes are more significant for heavily polluting enterprises with the bear market condition,short-sighted management,and intensive air pollution.(3)Mechanism tests show that CETS can reduce analysts’coverage of heavy polluters,reducing the risk of stock price crashes.This study reveals the role of CETS from the stock price crash risk perspective and helps to clarify the relationship between climatic risk and corporate financial risk.
基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (RS-2023-00210114)supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C1004264 and NRF2021R1A4A1032114)+1 种基金supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (NRF-2022R1A4A1019296)supported by the National R&D Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science and ICT (2021M3D1A2051636)。
文摘Mixed metal oxide(MMO) represents a critical class of materials that can allow for obtaining a dynamic interface between its components:reduced metal and its metal oxide counterpart during an electrocatalytic reaction.Here,a synthetic method utilizing a MOF-derived micro/mesoporous carbon as a template to prepare sub-2 nm MMO catalysts for CO_(2) electro reduction is reported.Starting from the zeolite imidazolate framework(ZIF-8),the pyrolyzed derivatives were used to synthesize sub-2 nm Pd-Ni MMO with different compositions.The Ni-rich(Pd_(20)-Ni_(80)/ZC) catalyst exhibits unexpectedly superior performance for CO production with an improved Faradaic efficiency(FE) of 95.3% at the current density of 200 mA cm^(-2) at-0.56 V vs.reversible hydrogen electrode(RHE) compared to other Pd-Ni compositions.X-ray photoelectron spectroscopy(XPS) analysis confirms the presence of Ni^(2+) and Pd^(2+) in all compositions,demonstrating the presence of MMO.Density functional theory(DFT) calculation reveals that the lower CO binding energy on the surface of the Pd_(20)-Ni_(80) cluster eases CO desorption,thus increasing its production.This work provides a general synthetic strategy for MMO electrocatalysts and can pave a new way for screening multimetallic catalysts with a dynamic electrochemical interface.
基金Supported by the Fundamental Research Funds for the Central Universities(CZY23014)Major Project of the National Social Science Foundation(19ZDA085)。
文摘On the basis of existing research,carbon emission reduction technologies in production,processing,packaging,transportation and storage of the food system were summarized,and their application effects were analyzed.In view of the inherent inadequacy of carbon emission reduction technologies in Chinese food system,starting from carbon labeling technologies and ESG system of the food industry,the unsoundness of the carbon emission reduction evaluation system and the high cost of related technology promotion,countermeasures such as strengthening top-level design,encouraging and supporting the development of new carbon emission reduction technologies,and improving carbon emission reduction technology subsidies were proposed by drawing on domestic and international experiences.
基金Sponsored by General Project of Natural Science Foundation of Beijing City(8202017)Youth Talent Support Program of 2018 Beijing Municipal University Academic Human Resources Development(PXM2018_014212_000043)。
文摘Since the 21^(st)century,the problem of global warming has been prominent,and the problem of climate change has attracted worldwide attention.All countries have issued urban climate adaptation planning policy documents to address the current climate problem.At the same time,the proposal of the“double carbon”vision allows us to focus on the carbon emission reduction of cities and buildings.In addition to the implementation of the direct carbon reduction approach in the whole life cycle of construction,the functional role of indirect carbon reduction cannot be underestimated.By analyzing the domestic and foreign urban climate adaptation planning policy documents,summarizing the indirect carbon reduction approaches,and analyzing the feasibility of the indirect carbon reduction and emission reduction methods from the perspective of urban climate adaptation planning,the indirect carbon reduction adaptation strategy is proposed,which provides a reference for the implementation of urban climate adaptation planning and the target completion of reaching the carbon neutralization and peak on time.
基金the financial support of the National Natural Science Foundation of China(U2268208)Science and Technology Program of China National Railway Group Co.,Ltd.(N2022×037).
文摘This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems.
基金he Australian Research Council for financial support(ARC,DE190100965,FL190100126 and CE230100032).
文摘Continuous accumulation and emission into the atmosphere of anthropogenic carbon dioxide(CO_(2)),a major greenhouse gas,has been recognized as a primary contributor to climate change associated with the global warming and acidification of oceans.This has led to drastic changes in the natural ecosystem,and hence an unhealthy ecological environment for human society.Thus,the effective mitigation of the ever increasing CO_(2)emission has been recognized as the most important global challenge.To achieve zero carbon footprint,novel materials and approaches are required for potentially reducing the CO_(2)release,while our current fossil-fuel-based energy must be replaced by renewable energy free from emissions.In this paper,porous carbons with hierarchical pore structures are promising for CO_(2)adsorption and electrochemical CO_(2)reduction owing to their high specific surface area,excellent catalytic performance,low cost and long-term stability.Since efficient gas-phased(electro)catalysis involves the access of reactants to active sites at the gas-liquid-solid triple phase,the hierarchical porous carbon materials possess multiple advantages for various CO_(2)-related applications with enhanced volumetric and gravimetric activities(e.g.,CO_(2)uptake and current density)for practical operations.Recent studies have demonstrated that porous carbon materials exhibited notable activities as CO_(2)adsorbents and provided facile conducting pathways and mass diffusion channels for efficient electrochemical CO_(2)reduction even under the high current operation conditions.Herein,we summarize recent advances in porous carbon materials for CO_(2)capture,storage,and electrochemical conversion.Prospectives and challenges on the rational design of porous carbon materials for scalable and practical CO_(2)capture and conversion are also discussed.
基金supported by the National Natural Science Foundation of China(51825802,52130803,52278020,and 72374121)the China National Key Research and Development Program(2018YFE0106100)+1 种基金the China Postdoctoral Science Foundation(2022M711815)the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘The life-cycle assessment method,which originates from general products and services,has gradually come to be applied to investigations of the life-cycle carbon emissions(LCCE)of buildings.A literature review was conducted to clarify LCCE implications,calculations,and reductions in the context of buildings.A total of 826 global building carbon emission calculation cases were obtained from 161 studies based on the framework of the building life-cycle stage division stipulated by ISO 21930 and the basic principles of the emission factor(EF)approach.The carbon emission calculation methods and results are discussed herein,based on the modules of production,construction,use,end-of-life,and supplementary benefits.According to the hotspot distribution of a building’s carbon emissions,carbon reduction strategies are classified into six groups for technical content and benefits analysis,including reducing the activity data pertaining to building materials and energy,reducing the carbon EFs of the building materials and energy,and exploiting the advantages of supplementary benefits.The research gaps and challenges in current building LCCE studies are summarized in terms of research goals and ideas,calculation methods,basic parameters,and carbon reduction strategies;development suggestions are also proposed.
基金Grant PID2020-115848RB-C21 "STORELEC" projectTED2021-129694B-C22 "DEFY-CO2" project funded by MCIN/AEI/10.13039/501100011033+3 种基金LMP253_ (2)1 project funded by Gobierno de AragónGrant IJC2019-041874-I funded by the MCIN/AEI/10.13039/501100011033CSIC for her JAE Intro ICU 2021-ICB-04 grantthe Y2020/EMT-6419 "CEOTRES" project funded by the Comunidad Autonoma de Madrid。
文摘The electrochemical CO_(2) reduction reaction(CO_(2)RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogendoped carbon xerogel(Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO_(2)RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode(RRDE), technique still rarely explored for CO_(2)RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-NC catalysts are found to be active and highly CO selective at low overpotentials(from -0.6 to -0.8 V vs.RHE) in 0.1 M KHCO_(3), while H_(2) from the competitive water reduction appears at larger overpotentials(-0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N_(4) moieties exhibits a CO_(2)-to-CO turnover frequency of 997 h^(-1) at -0.9 V vs. RHE with a H_(2)/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO_(2)RR.
基金support was received the Science&Technology Foundation of RIPP(PR20230092,PR20230259)the National Natural Science Foundation of China(22278419)the Key Core Technology Research(Social Development)Foundation of Suzhou(2023ss06).
文摘Mineral carbonation is a promising CO_(2) sequestration strategy that can utilize industrial wastes to convert CO_(2) into high-value CaCO_(3).This review summarizes the advancements in CO_(2) mineralization using typical industrial wastes to prepare ultrafine CaCO_(3).This work surveys the mechanisms of CO_(2) mineralization using these wastes and its capacities to synthesize CaCO_(3),evaluates the effects of carbonation pathways and operating parameters on the preparation of CaCO_(3),analyzes the current industrial application status and economics of this technology.Due to the large amount of impurities in solid wastes,the purity of CaCO_(3) prepared by indirect methods is greater than that prepared by direct methods.Crystalline CaCO_(3) includes three polymorphs.The polymorph of CaCO_(3) synthesized by carbonation process is determined the combined effects of various factors.These parameters essentially impact the nucleation and growth of CaCO_(3) by altering the CO_(2) supersaturation in the reaction system and the surface energy of CaCO_(3) grains.Increasing the initial pH of the solution and the CO_(2)flow rate favors the formation of vaterite,but calcite is formed under excessively high pH.Vaterite formation is favored at lower temperatures and residence time.With increased temperature and prolonged residence time,it passes through aragonite metastable phase and eventually transforms into calcite.Moreover,polymorph modifiers can decrease the surface energy of CaCO_(3) grains,facilitating the synthesis of vaterite.However,the large-scale application of this technology still faces many problems,including high costs,high energy consumption,low calcium leaching rate,low carbonation efficiency,and low product yield.Therefore,it is necessary to investigate ways to accelerate carbonation,optimize operating parameters,develop cost-effective agents,and understand the kinetics of CaCO_(3) nucleation and crystallization to obtain products with specific crystal forms.Furthermore,more studies on life cycle assessment(LCA)should be conducted to fully confirm the feasibility of the developed technologies.
基金supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP)and the Ministry of Trade,Industry&Energy(MOTIE)of the Republic of Korea(20212010100040)in part by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2019R1A2C1091158)in part by Brain Korea 21 FOUR project for Education and Research Center for Future Materials(F21YY7105002)
文摘Here we introduce bismuth-based catalysts for the efficient electrochemical reduction of CO_(2)to formic acid(HCOOH),which are composed of petal-shaped Bi_(2)O_(2)CO_(3)(BOC)that spontaneously formed from Bi thin film in aqueous carbonate solution at room temperature.During the electrochemical reduction process,the BOC petals transform to reduced BOC(R-BOC)consisting of individual BOC and Bi domains.Lattice mismatch between both domains induces biaxial strain at the interfaces.Density functional theory calculations suggest that the tensile strain on the Bi domain stabilizes the*OCHO intermediate,reducing the thermodynamic barrier toward CO_(2)conversion to HCOOH.Together with the thermodynamic benefit and the unique nanoporous petal-shaped morphology,R-BOC petals have a superior Faradaic efficiency of 95.9%at-0.8 V_(RHE)for the electrochemical conversion of CO_(2)to HCOOH.This work demonstrates that the spontaneously formed binary phases with desirable lattice strain can increase the activity of bismuth catalysts to the CO_(2)reduction reaction;such a strategy can be applicable in design of various electrocatalysts.
文摘Developing Cu single-atom catalysts(SACs)with well-defined active sites is highly desirable for producing CH4 in the electrochemical CO_(2) reduction reaction and understanding the structure-property relationship.Herein,a new graphdiyne analogue with uniformly distributed N_(2)-bidentate(note that N_(2)-bidentate site=N^N-bidentate site;N_(2)≠dinitrogen gas in this work)sites are synthesized.Due to the strong interaction between Cu and the N_(2)-bidentate site,a Cu SAC with isolated undercoordinated Cu-N_(2) sites(Cu1.0/N_(2)-GDY)is obtained,with the Cu loading of 1.0 wt%.Cu1.0/N_(2)-GDY exhibits the highest Faradaic efficiency(FE)of 80.6% for CH_(4) in electrocatalytic reduction of CO_(2) at-0.96 V vs.RHE,and the partial current density of CH_(4) is 160 mA cm^(-2).The selectivity for CH_(4) is maintained above 70% when the total current density is 100 to 300 mA cm^(-2).More remarkably,the Cu1.0/N_(2)-GDY achieves a mass activity of 53.2 A/mgCu toward CH4 under-1.18 V vs.RHE.In situ electrochemical spectroscopic studies reveal that undercoordinated Cu-N_(2) sites are more favorable in generating key ^(*)COOH and ^(*)CHO intermediate than Cu nanoparticle counterparts.This work provides an effective pathway to produce SACs with undercoordinated Metal-N_(2) sites toward efficient electrocatalysis.